# Environment Variables RANK=1 MASTER_PORT=29571 # Training Arguments LOCAL_BATCH_SIZE=4 GRADIENT_ACCUMULATION_STEPS=1 # Path Arguments export TRANSFORMERS_OFFLINE=1 export WANDB_PROJECT=vtimellm MODEL_VERSION=vicuna-v1-5-7b OUTPUT_DIR=./outputs/ RUN_NAME=vtimellm-$MODEL_VERSION-activitynet-stage4 deepspeed --include localhost:$RANK --master_port $MASTER_PORT vtimellm/train/train_mem.py \ --deepspeed ./scripts/zero2.json \ --lora_enable True \ --training_stage 3 --finetuning True \ --model_name_or_path ./checkpoints/vtimellm/vicuna-7b-v1.5 \ --version v1 \ --data_path ./data/activitynet/cotasks-train.json \ --feat_folder ./data/activitynet/clipvitl14-vtimellm.pth \ --pretrain_mm_mlp_adapter ./checkpoints/vtimellm/vtimellm-$MODEL_VERSION-stage1/mm_projector.bin \ --stage2_path ./checkpoints/vtimellm/vtimellm-$MODEL_VERSION-stage2 \ --stage3_path ./checkpoints/vtimellm/vtimellm-$MODEL_VERSION-stage3 \ --output_dir $OUTPUT_DIR/${RUN_NAME} \ --bf16 True \ --num_train_epochs 1 \ --per_device_train_batch_size $LOCAL_BATCH_SIZE \ --gradient_accumulation_steps $GRADIENT_ACCUMULATION_STEPS \ --evaluation_strategy "no" \ --save_strategy "no" \ --save_steps 50000 \ --save_total_limit 10 \ --learning_rate 2e-5 \ --freeze_mm_mlp_adapter True \ --lora_r 64 --lora_alpha 128 --weight_decay 0. --warmup_ratio 0.03 \ --lr_scheduler_type "cosine" \ --logging_steps 1 \ --tf32 True \ --model_max_length 2048 \ --gradient_checkpointing True \ --dataloader_num_workers 4 \ --lazy_preprocess True \ --report_to wandb \ --run_name $RUN_NAME