# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """sil-ai/audio-keyword-spotting is a subset of MLCommons/ml_spoken_words focusing on keywords found in the Bible""" import json import os import datasets _CITATION = """\ @InProceedings{huggingface:audio-keyword-spotting, title = {audio-keyword-spotting}, author={Joshua Nemecek }, year={2022} } """ _DESCRIPTION = 'sil-ai/audio-keyword-spotting is a subset of MLCommons/ml_spoken_words focusing on keywords found in the Bible' _LANGUAGES = ['eng', 'ind', 'spa'] _LANG_ISO_DICT = {'en':'eng','es':'spa','id':'ind'} _HOMEPAGE = 'https://ai.sil.org' _URLS = {"metadata": "bible-keyword.json", "files": {lang: f'https://audio-keyword-spotting.s3.amazonaws.com/HF/{lang}.tar.gz' for lang in _LANGUAGES}, } _LICENSE = 'CC-BY 4.0' _GENDERS = ["MALE", "FEMALE", "OTHER", "NAN"] class AudioKeywordSpottingConfig(datasets.BuilderConfig): """BuilderConfig for Audio-Keyword-Spotting""" def __init__(self, language='', **kwargs): super(AudioKeywordSpottingConfig, self).__init__(**kwargs) self.language = _LANG_ISO_DICT.get(language, language) class AudioKeywordSpotting(datasets.GeneratorBasedBuilder): """Audio-Keyword-Spotting class""" BUILDER_CONFIGS = [AudioKeywordSpottingConfig(name=x, description=f'Audio keyword spotting for language code {x}', language=x) for x in _LANGUAGES] DEFAULT_CONFIG_NAME = '' BUILDER_CONFIG_CLASS = AudioKeywordSpottingConfig VERSION = datasets.Version("0.0.1") def _info(self): features = datasets.Features( { "file": datasets.Value("string"), "is_valid": datasets.Value("bool"), "language": datasets.Value("string"), "speaker_id": datasets.Value("string"), "gender": datasets.ClassLabel(names=_GENDERS), "keyword": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=16_000), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): if self.config.language == '': raise ValueError('Please specify a language.') elif self.config.language not in _LANGUAGES: raise ValueError(f'{self.config.language} does not appear in the list of languages: {_LANGUAGES}') data_dir = dl_manager.download(_URLS['metadata']) with open(data_dir, 'r') as f: filemeta = json.load(f) audio_dir = dl_manager.download_and_extract(_URLS['files'][self.config.name]) langmeta = filemeta[self.config.language] return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "audio_dir": audio_dir, "data": langmeta, "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "audio_dir": audio_dir, "data": langmeta, "split": "validation", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "audio_dir": audio_dir, "data": langmeta, "split": "test", }, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, audio_dir, data, split): for key, row in enumerate(data[split]): try: tfile = os.path.join(audio_dir, row['file']) if not tfile.endswith('.wav'): os.rename(tfile, tfile + '.wav') tfile += '.wav' yield key, { "file": tfile, "is_valid": row['is_valid'], "language": self.config.language, "speaker_id": row['speaker_id'], "gender": row['gender'], "keyword": row['keyword'], "audio": tfile, } except Exception as e: print(e) print(f'In split {split}: {row["file"]} failed to download. Data may be missing.') pass