import os import datasets as ds import pytest from MSCOCO import CATEGORIES, SUPER_CATEGORIES @pytest.fixture def dataset_path() -> str: return "MSCOCO.py" @pytest.mark.skipif( condition=bool(os.environ.get("CI", False)), reason=( "Because this loading script downloads a large dataset, " "we will skip running it on CI." ), ) @pytest.mark.parametrize( argnames="decode_rle,", argvalues=( True, False, ), ) @pytest.mark.parametrize( argnames=( "dataset_year", "coco_task", "expected_num_train", "expected_num_validation", ), argvalues=( (2014, "captions", 82783, 40504), (2017, "captions", 118287, 5000), (2014, "instances", 82081, 40137), (2017, "instances", 117266, 4952), (2014, "person_keypoints", 45174, 21634), (2017, "person_keypoints", 64115, 2693), ), ) def test_load_dataset( dataset_path: str, dataset_year: int, coco_task: str, decode_rle: bool, expected_num_train: int, expected_num_validation: int, ): dataset = ds.load_dataset( path=dataset_path, year=dataset_year, coco_task=coco_task, decode_rle=decode_rle, ) assert dataset["train"].num_rows == expected_num_train assert dataset["validation"].num_rows == expected_num_validation def test_consts(): assert len(CATEGORIES) == 80 assert len(SUPER_CATEGORIES) == 12