import json import random import string from collections import defaultdict from typing import Dict, List, Optional, Union import datasets as ds import pandas as pd _CITATION = """\ @inproceedings{kurihara-etal-2022-jglue, title = "{JGLUE}: {J}apanese General Language Understanding Evaluation", author = "Kurihara, Kentaro and Kawahara, Daisuke and Shibata, Tomohide", booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference", month = jun, year = "2022", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2022.lrec-1.317", pages = "2957--2966", abstract = "To develop high-performance natural language understanding (NLU) models, it is necessary to have a benchmark to evaluate and analyze NLU ability from various perspectives. While the English NLU benchmark, GLUE, has been the forerunner, benchmarks are now being released for languages other than English, such as CLUE for Chinese and FLUE for French; but there is no such benchmark for Japanese. We build a Japanese NLU benchmark, JGLUE, from scratch without translation to measure the general NLU ability in Japanese. We hope that JGLUE will facilitate NLU research in Japanese.", } @InProceedings{Kurihara_nlp2022, author = "栗原健太郎 and 河原大輔 and 柴田知秀", title = "JGLUE: 日本語言語理解ベンチマーク", booktitle = "言語処理学会第28回年次大会", year = "2022", url = "https://www.anlp.jp/proceedings/annual_meeting/2022/pdf_dir/E8-4.pdf" note= "in Japanese" } """ _DESCRIPTION = """\ JGLUE, Japanese General Language Understanding Evaluation, is built to measure the general NLU ability in Japanese. JGLUE has been constructed from scratch without translation. We hope that JGLUE will facilitate NLU research in Japanese. """ _HOMEPAGE = "https://github.com/yahoojapan/JGLUE" _LICENSE = """\ This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. """ _DESCRIPTION_CONFIGS = { "MARC-ja": "MARC-ja is a dataset of the text classification task. This dataset is based on the Japanese portion of Multilingual Amazon Reviews Corpus (MARC) (Keung+, 2020).", "JSTS": "JSTS is a Japanese version of the STS (Semantic Textual Similarity) dataset. STS is a task to estimate the semantic similarity of a sentence pair.", "JNLI": "JNLI is a Japanese version of the NLI (Natural Language Inference) dataset. NLI is a task to recognize the inference relation that a premise sentence has to a hypothesis sentence.", "JSQuAD": "JSQuAD is a Japanese version of SQuAD (Rajpurkar+, 2016), one of the datasets of reading comprehension.", "JCommonsenseQA": "JCommonsenseQA is a Japanese version of CommonsenseQA (Talmor+, 2019), which is a multiple-choice question answering dataset that requires commonsense reasoning ability.", } _URLS = { "MARC-ja": { "data": "https://s3.amazonaws.com/amazon-reviews-pds/tsv/amazon_reviews_multilingual_JP_v1_00.tsv.gz", "filter_review_id_list/valid.txt": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/preprocess/marc-ja/data/filter_review_id_list/valid.txt", "label_conv_review_id_list/valid.txt": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/preprocess/marc-ja/data/label_conv_review_id_list/valid.txt", }, "JSTS": { "train": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsts-v1.1/train-v1.1.json", "valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsts-v1.1/valid-v1.1.json", }, "JNLI": { "train": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jnli-v1.1/train-v1.1.json", "valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jnli-v1.1/valid-v1.1.json", }, "JSQuAD": { "train": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsquad-v1.1/train-v1.1.json", "valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jsquad-v1.1/valid-v1.1.json", }, "JCommonsenseQA": { "train": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jcommonsenseqa-v1.1/train-v1.1.json", "valid": "https://raw.githubusercontent.com/yahoojapan/JGLUE/main/datasets/jcommonsenseqa-v1.1/valid-v1.1.json", }, } def features_jsts() -> ds.Features: features = ds.Features( { "sentence_pair_id": ds.Value("string"), "yjcaptions_id": ds.Value("string"), "sentence1": ds.Value("string"), "sentence2": ds.Value("string"), "label": ds.Value("float"), } ) return features def features_jnli() -> ds.Features: features = ds.Features( { "sentence_pair_id": ds.Value("string"), "yjcaptions_id": ds.Value("string"), "sentence1": ds.Value("string"), "sentence2": ds.Value("string"), "label": ds.ClassLabel( num_classes=3, names=["entailment", "contradiction", "neutral"] ), } ) return features def features_jsquad() -> ds.Features: title = ds.Value("string") answers = ds.Sequence( {"text": ds.Value("string"), "answer_start": ds.Value("int64")} ) qas = ds.Sequence( { "question": ds.Value("string"), "id": ds.Value("string"), "answers": answers, "is_impossible": ds.Value("bool"), } ) paragraphs = ds.Sequence({"qas": qas, "context": ds.Value("string")}) features = ds.Features( {"data": ds.Sequence({"title": title, "paragraphs": paragraphs})} ) return features def features_jcommonsenseqa() -> ds.Features: features = ds.Features( { "q_id": ds.Value("int64"), "question": ds.Value("string"), "choice0": ds.Value("string"), "choice1": ds.Value("string"), "choice2": ds.Value("string"), "choice3": ds.Value("string"), "choice4": ds.Value("string"), "label": ds.Value("int8"), } ) return features def features_marc_ja() -> ds.Features: features = ds.Features() return features class MarcJaConfig(ds.BuilderConfig): def __init__( self, name: str = "MARC-ja", is_han_to_zen: bool = False, max_instance_num: Optional[int] = None, max_char_length: Optional[int] = None, is_pos_neg: bool = False, train_ratio: float = 0.94, val_ratio: float = 0.03, test_ratio: float = 0.03, output_testset: bool = False, filter_review_id_list_valid: Optional[str] = None, filter_review_id_list_test: Optional[str] = None, label_conv_review_id_list_valid: Optional[str] = None, label_conv_review_id_list_test: Optional[str] = None, version: Optional[Union[ds.utils.Version, str]] = ds.utils.Version("0.0.0"), data_dir: Optional[str] = None, data_files: Optional[ds.data_files.DataFilesDict] = None, description: Optional[str] = None, ) -> None: super().__init__( name=name, version=version, data_dir=data_dir, data_files=data_files, description=description, ) assert train_ratio + val_ratio + test_ratio == 1.0 self.train_ratio = train_ratio self.val_ratio = val_ratio self.test_ratio = test_ratio self.is_han_to_zen = is_han_to_zen self.max_instance_num = max_instance_num self.max_char_length = max_char_length self.is_pos_neg = is_pos_neg self.output_testset = output_testset self.filter_review_id_list_valid = filter_review_id_list_valid self.filter_review_id_list_test = filter_review_id_list_test self.label_conv_review_id_list_valid = label_conv_review_id_list_valid self.label_conv_review_id_list_test = label_conv_review_id_list_test def preprocess_for_marc_ja( config: MarcJaConfig, data_file_path: str, filter_review_id_list_path: str, label_conv_review_id_list_path: str, ) -> Dict[str, str]: import mojimoji from bs4 import BeautifulSoup df = pd.read_csv(data_file_path, delimiter="\t") df = df[["review_body", "star_rating", "review_id"]] # rename columns df = df.rename(columns={"review_body": "text", "star_rating": "rating"}) def get_label(rating: int, is_pos_neg: bool = False) -> Optional[str]: if rating >= 4: return "positive" elif rating <= 2: return "negative" else: if is_pos_neg: return None else: return "neutral" # convert the rating to label df = df.assign( label=df["rating"].apply(lambda rating: get_label(rating, config.is_pos_neg)) ) # remove rows where the label is None df = df[df["label"].isnull()] # remove html tags from the text df = df.assign( text=df["text"].apply( lambda text: BeautifulSoup(text, "html.parser").get_text() ) ) def is_filtered_by_ascii_rate(text: str, threshold: float = 0.9) -> bool: ascii_letters = set(string.printable) rate = sum(c in ascii_letters for c in text) / len(text) return rate >= threshold # filter by ascii rate df = df[~df["text"].apply(is_filtered_by_ascii_rate)] if config.max_char_length is not None: df = df[df["text"].str.len() <= config.max_char_length] if config.is_han_to_zen: df = df.assign(text=df["text"].apply(mojimoji.han_to_zen)) df = df[["text", "label", "review_id"]] df = df.rename(columns={"text": "sentence"}) # shuffle dataset instances = df.to_dict(orient="records") random.seed(1) random.shuffle(instances) def get_filter_review_id_list( filter_review_id_list_valid: Optional[str] = None, filter_review_id_list_test: Optional[str] = None, ) -> Dict[str, List[str]]: filter_review_id_list = defaultdict(list) if filter_review_id_list_valid is not None: with open(filter_review_id_list_valid, "r") as rf: filter_review_id_list["valid"] = [line.rstrip() for line in rf] if filter_review_id_list_test is not None: with open(filter_review_id_list_test, "r") as rf: filter_review_id_list["test"] = [line.rstrip() for line in rf] return filter_review_id_list def get_label_conv_review_id_list( label_conv_review_id_list_valid: Optional[str] = None, label_conv_review_id_list_test: Optional[str] = None, ) -> Dict[str, str]: label_conv_review_id_list = defaultdict(list) if label_conv_review_id_list_valid is not None: breakpoint() with open(label_conv_review_id_list_valid, "r") as f: label_conv_review_id_list["valid"] = { row[0]: row[1] for row in csv.reader(f) } if label_conv_review_id_list_test is not None: breakpoint() with open(label_conv_review_id_list_test, "r") as f: label_conv_review_id_list["test"] = { row[0]: row[1] for row in csv.reader(f) } return label_conv_review_id_list def output_data( instances: List[Dict[str, str]], train_ratio: float, val_ratio: float, test_ratio: float, output_testset: bool = False, ) -> Dict[str, str]: instance_num = len(instances) split_instances = {} length1 = int(instance_num * train_ratio) split_instances["train"] = instances[:length1] length2 = int(instance_num * (train_ratio + val_ratio)) split_instances["valid"] = instances[length1:length2] split_instances["test"] = instances[length2:] filter_review_id_list = get_filter_review_id_list( filter_review_id_list_valid=config.filter_review_id_list_valid, filter_review_id_list_test=config.filter_review_id_list_test, ) label_conv_review_id_list = get_label_conv_review_id_list( label_conv_review_id_list_valid=config.label_conv_review_id_list_valid, label_conv_review_id_list_test=config.label_conv_review_id_list_test, ) for eval_type in ("train", "valid", "test"): if not output_testset and eval_type == "test": continue for instance in split_instances[eval_type]: # filter if len(filter_review_id_list) != 0: filter_flag = False for filter_eval_type in ("valid", "test"): if ( eval_type == filter_eval_type and instance["review_id"] in filter_review_id_list[filter_eval_type] ): filter_flag = True if eval_type != filter_eval_type: if filter_eval_type in filter_review_id_list: assert ( instance["review_id"] not in filter_review_id_list[filter_eval_type] ) if filter_flag is True: continue # convert labels if len(label_conv_review_id_list) != 0: for conv_eval_type in ("valid", "test"): if ( eval_type == conv_eval_type and instance["review_id"] in label_conv_review_id_list[conv_eval_type] ): assert ( instance["label"] != label_conv_review_id_list[conv_eval_type][ instance["review_id"] ] ) # update instance["label"] = label_conv_review_id_list[ conv_eval_type ][instance["review_id"]] if eval_type != conv_eval_type: if conv_eval_type in label_conv_review_id_list: assert ( instance["review_id"] not in label_conv_review_id_list[conv_eval_type] ) if eval_type == "test": del instance["label"] breakpoint() breakpoint() file_paths = output_data( df, train_ratio=config.train_ratio, val_ratio=config.val_ratio, test_ratio=config.test_ratio, output_testset=config.output_testset, ) return file_paths class JGLUE(ds.GeneratorBasedBuilder): VERSION = ds.Version("1.1.0") BUILDER_CONFIGS = [ MarcJaConfig( name="MARC-ja", version=VERSION, description=_DESCRIPTION_CONFIGS["MARC-ja"], ), ds.BuilderConfig( name="JSTS", version=VERSION, description=_DESCRIPTION_CONFIGS["JSTS"], ), ds.BuilderConfig( name="JNLI", version=VERSION, description=_DESCRIPTION_CONFIGS["JNLI"], ), ds.BuilderConfig( name="JSQuAD", version=VERSION, description=_DESCRIPTION_CONFIGS["JSQuAD"], ), ds.BuilderConfig( name="JCommonsenseQA", version=VERSION, description=_DESCRIPTION_CONFIGS["JCommonsenseQA"], ), ] def _info(self) -> ds.DatasetInfo: if self.config.name == "JSTS": features = features_jsts() elif self.config.name == "JNLI": features = features_jnli() elif self.config.name == "JSQuAD": features = features_jsquad() elif self.config.name == "JCommonsenseQA": features = features_jcommonsenseqa() elif self.config.name == "MARC-ja": features = features_marc_ja() else: raise ValueError(f"Invalid config name: {self.config.name}") return ds.DatasetInfo( description=_DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, license=_LICENSE, features=features, ) def _split_generators(self, dl_manager: ds.DownloadManager): file_paths = dl_manager.download_and_extract(_URLS[self.config.name]) if self.config.name == "MARC-ja": file_paths = preprocess_for_marc_ja( config=self.config, data_file_path=file_paths["data"], filter_review_id_list_path=file_paths[ "filter_review_id_list/valid.txt" ], label_conv_review_id_list_path=file_paths[ "label_conv_review_id_list/valid.txt" ], ) return [ ds.SplitGenerator( name=ds.Split.TRAIN, gen_kwargs={ "file_path": file_paths["train"], }, ), ds.SplitGenerator( name=ds.Split.VALIDATION, gen_kwargs={ "file_path": file_paths["valid"], }, ), ] def _generate_examples(self, file_path: str): with open(file_path, "r") as rf: for i, line in enumerate(rf): json_dict = json.loads(line) yield i, json_dict