# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import csv import textwrap import pandas as pd import datasets LANGUAGES = ['amh', 'hau', 'ibo', 'arq', 'ary', 'yor', 'por', 'twi', 'tso', 'tir', 'orm', 'pcm', 'kin', 'swa'] class AfriSentiConfig(datasets.BuilderConfig): """BuilderConfig for AfriSenti""" def __init__( self, text_features, label_column, label_classes, train_url, valid_url, test_url, citation, **kwargs, ): """BuilderConfig for AfriSenti. Args: text_features: `dict[string]`, map from the name of the feature dict for each text field to the name of the column in the txt/csv/tsv file label_column: `string`, name of the column in the txt/csv/tsv file corresponding to the label label_classes: `list[string]`, the list of classes if the label is categorical train_url: `string`, url to train file from valid_url: `string`, url to valid file from test_url: `string`, url to test file from citation: `string`, citation for the data set **kwargs: keyword arguments forwarded to super. """ super(AfriSentiConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) self.text_features = text_features self.label_column = label_column self.label_classes = label_classes self.train_url = train_url self.valid_url = valid_url self.test_url = test_url self.citation = citation class AfriSenti(datasets.GeneratorBasedBuilder): """AfriSenti benchmark""" BUILDER_CONFIGS = [] for lang in LANGUAGES: BUILDER_CONFIGS.append( AfriSentiConfig( name=lang, description=textwrap.dedent( f"""\ {lang} dataset.""" ), text_features={"tweet": "tweet"}, label_classes=["positive", "neutral", "negative"], label_column="label", train_url=f"https://raw.githubusercontent.com/afrisenti-semeval/afrisent-semeval-2023/main/data/{lang}/train.tsv", valid_url=f"https://raw.githubusercontent.com/afrisenti-semeval/afrisent-semeval-2023/main/data/{lang}/dev.tsv", test_url=f"https://raw.githubusercontent.com/afrisenti-semeval/afrisent-semeval-2023/main/data/{lang}/test.tsv", citation=textwrap.dedent( f"""\ {lang} citation""" ), ), ) def _info(self): features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features} features["label"] = datasets.features.ClassLabel(names=self.config.label_classes) return datasets.DatasetInfo( description=self.config.description, features=datasets.Features(features), citation=self.config.citation, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" train_path = dl_manager.download_and_extract(self.config.train_url) valid_path = dl_manager.download_and_extract(self.config.valid_url) test_path = dl_manager.download_and_extract(self.config.test_url) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path, "split": "train"}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_path, "split": "dev"}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path, "split": "test"}), ] def _generate_examples(self, filepath): df = pd.read_csv(filepath, sep='\t') print('-'*100) print(df.head()) print('-'*100) for id_, row in df.iterrows(): tweet = row["tweet"] label = row["label"] yield id_, {"tweet": tweet, "label": label}