import os import json from dotenv import load_dotenv from googleapiclient.discovery import build from youtube_transcript_api import TranscriptsDisabled, YouTubeTranscriptApi import logging import timeit from tqdm import tqdm # Import tqdm start_time = timeit.default_timer() logging.basicConfig(filename='youtube_fetch.log', level=logging.ERROR) load_dotenv() api_key = os.getenv('yt_secret_key') os.chdir("d:/Machine Learning/SLM-Project/") youtube = build('youtube', 'v3', developerKey=api_key) file_path = 'Data Collection/Transcript Collection/channel_ids_snippet.json' with open(file_path, 'r') as file: channelData = json.load(file) videoNo = 0 for links in channelData: next_page_token = None videoIds = [] while True: channelRes = youtube.channels().list( part='contentDetails,snippet', id=links ).execute() if 'items' in channelRes and channelRes['items']: channel_name = channelRes["items"][0]["snippet"]["title"] playlistId = channelRes['items'][0]['contentDetails']['relatedPlaylists']['uploads'] playlistResult = youtube.playlistItems().list( part='contentDetails', playlistId=playlistId, maxResults=100, pageToken=next_page_token ).execute() videoIds.extend([item['contentDetails']['videoId'] for item in playlistResult.get('items', [])]) next_page_token = playlistResult.get('nextPageToken') if not next_page_token: break with tqdm(total=len(videoIds), desc=f"Fetching '{channel_name}' videos") as pbar: for ids in videoIds: videoUrl = f"https://www.youtube.com/watch?v={ids}" try: raw_transcripts = [] try: captions = YouTubeTranscriptApi.get_transcript( ids, languages=['en'], preserve_formatting=True ) if captions: formatted_captions = [{'text': caption['text']} for caption in captions] raw_transcripts.append(formatted_captions) videoNo += 1 pbar.update(1) else: continue except TranscriptsDisabled as e: continue except Exception as e: logging.error(f"There was some error while fetching the video: {str(e)}") except Exception as e: logging.error(f"There was some error while getting the captions: {str(e)}") with open('Data/caption files/new_data.txt', 'a', encoding='utf-8') as file: for videoCaptions in raw_transcripts: for line in videoCaptions: file.write(line['text'] + ' ') print(f"total {videoNo} videos were fetched") print(f"time taken to execute the code is {(timeit.default_timer() - start_time) / 3600} hrs")