# -*- coding: utf-8 -*- """ @author:XuMing(xuming624@qq.com) @description: """ """Natural Language Inference (NLI) Chinese Corpus.(nli_zh)""" import os import datasets _DESCRIPTION = """纯文本数据,格式:(sentence1, sentence2, label)。常见中文语义匹配数据集,包含ATEC、BQ、LCQMC、PAWSX、STS-B共5个任务。""" ATEC_HOME = "https://github.com/IceFlameWorm/NLP_Datasets/tree/master/ATEC" BQ_HOME = "http://icrc.hitsz.edu.cn/info/1037/1162.htm" LCQMC_HOME = "http://icrc.hitsz.edu.cn/Article/show/171.html" PAWSX_HOME = "https://arxiv.org/abs/1908.11828" STSB_HOME = "https://github.com/pluto-junzeng/CNSD" _CITATION = "https://github.com/shibing624/text2vec" _DATA_URL = "https://github.com/shibing624/text2vec/releases/download/1.1.2/senteval_cn.zip" class NliZhConfig(datasets.BuilderConfig): """BuilderConfig for NLI_zh""" def __init__(self, features, data_url, citation, url, label_classes=(0, 1), **kwargs): """BuilderConfig for NLI_zh Args: features: `list[string]`, list of the features that will appear in the feature dict. Should not include "label". data_url: `string`, url to download the zip file from. citation: `string`, citation for the data set. url: `string`, url for information about the data set. label_classes: `list[int]`, sim is 1, else 0. **kwargs: keyword arguments forwarded to super. """ super().__init__(version=datasets.Version("1.0.0"), **kwargs) self.features = features self.label_classes = label_classes self.data_url = data_url self.citation = citation self.url = url class NliZh(datasets.GeneratorBasedBuilder): """The Natural Language Inference Chinese(NLI_zh) Corpus.""" BUILDER_CONFIGS = [ NliZhConfig( name="ATEC", description=_DESCRIPTION, features=["sentence1", "sentence1"], data_url=_DATA_URL, citation=_CITATION, url=ATEC_HOME, ), NliZhConfig( name="BQ", description=_DESCRIPTION, features=["sentence1", "sentence1"], data_url=_DATA_URL, citation=_CITATION, url=BQ_HOME, ), NliZhConfig( name="LCQMC", description=_DESCRIPTION, features=["sentence1", "sentence1"], data_url=_DATA_URL, citation=_CITATION, url=LCQMC_HOME, ), NliZhConfig( name="PAWSX", description=_DESCRIPTION, features=["sentence1", "sentence1"], data_url=_DATA_URL, citation=_CITATION, url=PAWSX_HOME, ), NliZhConfig( name="STS-B", description=_DESCRIPTION, features=["sentence1", "sentence1"], data_url=_DATA_URL, citation=_CITATION, url=STSB_HOME, ), ] def _info(self): return datasets.DatasetInfo( description=self.config.description, features=datasets.Features( { "sentence1": datasets.Value("string"), "sentence2": datasets.Value("string"), "label": datasets.Value("int32"), # "idx": datasets.Value("int32"), } ), homepage=self.config.url, citation=self.config.citation, ) def _split_generators(self, dl_manager): dl_dir = dl_manager.download_and_extract(self.config.data_url) or "" dl_dir = os.path.join(dl_dir, f"senteval_cn/{self.config.name}") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "data_file": os.path.join(dl_dir, f"{self.config.name}.train.data"), "split": datasets.Split.TRAIN, }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "data_file": os.path.join(dl_dir, f"{self.config.name}.valid.data"), "split": datasets.Split.VALIDATION, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "data_file": os.path.join(dl_dir, f"{self.config.name}.test.data"), "split": datasets.Split.TEST, }, ), ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" with open(filepath, 'r', encoding="utf-8") as f: for idx, row in enumerate(f): # print(row) terms = row.split('\t') yield idx, { "sentence1": terms[0], "sentence2": terms[1], "label": int(terms[2]), }