# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """MNIST Data Set""" from __future__ import absolute_import, division, print_function import struct import numpy as np import datasets _CITATION = """\ @article{lecun2010mnist, title={MNIST handwritten digit database}, author={LeCun, Yann and Cortes, Corinna and Burges, CJ}, journal={ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist}, volume={2}, year={2010} } """ _DESCRIPTION = """\ The MNIST dataset consists of 70,000 28x28 black-and-white images in 10 classes (one for each digits), with 7,000 images per class. There are 60,000 training images and 10,000 test images. """ _URL = "https://storage.googleapis.com/cvdf-datasets/mnist/" _URLS = { "train_images": "train-images-idx3-ubyte.gz", "train_labels": "train-labels-idx1-ubyte.gz", "test_images": "t10k-images-idx3-ubyte.gz", "test_labels": "t10k-labels-idx1-ubyte.gz", } class MNIST(datasets.GeneratorBasedBuilder): """MNIST Data Set""" BUILDER_CONFIGS = [ datasets.BuilderConfig( name="mnist", version=datasets.Version("1.0.0"), description=_DESCRIPTION, ) ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image": datasets.Array2D(shape=(28, 28), dtype="uint8"), "label": datasets.features.ClassLabel(names=["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]), } ), supervised_keys=("image", "label"), homepage="http://yann.lecun.com/exdb/mnist/", citation=_CITATION, ) def _split_generators(self, dl_manager): urls_to_download = {key: _URL + fname for key, fname in _URLS.items()} downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": [downloaded_files["train_images"], downloaded_files["train_labels"]], "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": [downloaded_files["test_images"], downloaded_files["test_labels"]], "split": "test", }, ), ] def _generate_examples(self, filepath, split): """This function returns the examples in the raw form.""" # Images with open(filepath[0], "rb") as f: # First 16 bytes contain some metadata _ = f.read(4) size = struct.unpack(">I", f.read(4))[0] _ = f.read(8) images = np.frombuffer(f.read(), dtype=np.uint8).reshape(size, 28, 28) # Labels with open(filepath[1], "rb") as f: # First 8 bytes contain some metadata _ = f.read(8) labels = np.frombuffer(f.read(), dtype=np.uint8) for idx in range(size): yield idx, {"image": images[idx], "label": str(labels[idx])}