""" Copyright (c) 2024, Idiap Research Institute. All rights reserved. SPDX-License-Identifier: MIT License For full license text, see the LICENSE file in the repo root """ #!/usr/bin/env python3 import os import json import datasets from datasets import (GeneratorBasedBuilder, BuilderConfig, SplitGenerator, DatasetInfo, Features, Value, Version) logger = datasets.logging.get_logger(__name__) datasets.logging.disable_progress_bar() _VERSION = Version("1.0.0") _CITATION = """ @inproceedings{burdisso-etal-2024-dialog2flow, title = "Dialog2Flow: Pre-training Soft-Contrastive Action-Driven Sentence Embeddings for Automatic Dialog Flow Extraction", author = "Burdisso, Sergio and Madikeri, Srikanth and Motlicek, Petr", booktitle = "Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing", month = nov, year = "2024", address = "Miami", publisher = "Association for Computational Linguistics", } """ DATASETS_PRETRAIN = ["dialog-acts", "slots", "dialog-actions"] DATASETS_DS = { 'ABCD': ['test', 'train', 'val'], 'BiTOD': ['test', 'train', 'val'], 'DSTC2-Clean': ['test', 'train', 'val'], 'Disambiguation': ['test', 'train', 'val'], 'FRAMES': ['test', 'train'], 'HDSA-Dialog': ['test', 'train', 'val'], 'GECOR': ['train'], 'KETOD': ['test', 'train', 'val'], 'MS-DC': ['train'], 'MULTIWOZ2_2': ['test', 'train', 'val'], 'MulDoGO': ['test', 'train', 'val'], 'MultiWOZ_2.1': ['test', 'train', 'val'], 'SGD': ['test', 'train', 'val'], 'SimJointMovie': ['test', 'train', 'val'], 'SimJointRestaurant': ['test', 'train', 'val'], 'Taskmaster1': ['test', 'train', 'val'], 'Taskmaster2': ['train'], 'Taskmaster3': ['test', 'train', 'val'], 'WOZ2_0': ['test', 'train', 'val'], # 'SimJointGEN': ['test', 'train', 'val'], } DATASETS = list(DATASETS_DS.keys()) + DATASETS_PRETRAIN SPLIT2NAME = { "train": datasets.Split.TRAIN, "val": datasets.Split.VALIDATION, "test": datasets.Split.TEST, } class Dialog2FlowConfig(BuilderConfig): """BuilderConfig for Dialog2Flow.""" def __init__(self, name, citation, url, **kwargs): """BuilderConfig for Dialog2Flow. Args: extra_features: `list[string]`, list of the features that will appear in the feature dict. Should not include "label". data_url: `string`, url to download the zip file from. citation: `string`, citation for the data set. url: `string`, url for information about the data set. label_classes: `list[string]`, the list of classes for the label if the label is present as a string. Non-string labels will be cast to either 'False' or 'True'. **kwargs: keyword arguments forwarded to super. """ super(Dialog2FlowConfig, self).__init__(version=_VERSION, **kwargs) self.name = name self.citation = citation self.url = url class Dialog2FlowBuilder(GeneratorBasedBuilder): BUILDER_CONFIG_CLASS = Dialog2FlowConfig BUILDER_CONFIGS = [] for dataset in DATASETS: BUILDER_CONFIGS.append( Dialog2FlowConfig( name=dataset, description="", citation=_CITATION, url="https://github.com/idiap/dialog2flow", )) DEFAULT_CONFIG_NAME = "dialog-actions" def _info(self): if self.config.name in DATASETS_PRETRAIN: features = {"utterance": Value("string"), "label": Value("string")} else: features = {"dialog": [ { "speaker": Value("string"), "text": Value("string"), "domains": [ Value("string") ], "labels": { "dialog_acts": { "acts" : [Value("string")], "main_acts" : [Value("string")], "original_acts" : [Value("string")], }, "slots": [Value("string")], "intents": [Value("string")] } } ]} return DatasetInfo( description="", features=Features(features), homepage=self.config.url, citation=_CITATION, ) def _split_generators(self, dl_manager): if self.config.name in DATASETS_PRETRAIN: # TODO file_path = dl_manager.download({ "train": "train.csv", # full "val": "eval.csv", # few shot subset "test": "test.csv", # SpokenWOZ }) splits = [ SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "file_path": file_path["train"], "split": datasets.Split.TRAIN, }, ), SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "file_path": file_path["val"], "split": datasets.Split.VALIDATION, }, ), SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "file_path": file_path["test"], "split": datasets.Split.TEST, }, ) ] else: splits = [] file_path = dl_manager.download({ "train": os.path.join(self.config.name, "data.json") }) split_names = DATASETS_DS[self.config.name] for split_name in split_names: splits.append( SplitGenerator( name=SPLIT2NAME[split_name], gen_kwargs={ "file_path": file_path["train"], "split": SPLIT2NAME[split_name], "split_name": split_name }, ) ) return splits def _load_json(self, file_path): with open(file_path, encoding="utf-8") as f: data = json.load(f) return data def _generate_examples(self, file_path, split, split_name=None): if split_name is not None: data = self._load_json(file_path) data = [(dial_id, dial) for dial_id, dial in data["dialogs"].items() if split_name in dial_id] logger.info(f"generating {len(data)} examples from = {split}") for dial_id, dial in data: yield dial_id, {"dialog": dial} else: pass