"""PHEE: A Dataset for Pharmacovigilance Event Extraction from Text""" import json import datasets from datasets.tasks import LanguageModeling logger = datasets.logging.get_logger(__name__) _CITATION = """\ @misc{sun2022phee, title={PHEE: A Dataset for Pharmacovigilance Event Extraction from Text}, author={Zhaoyue Sun and Jiazheng Li and Gabriele Pergola and Byron C. Wallace and Bino John and Nigel Greene and Joseph Kim and Yulan He}, year={2022}, eprint={2210.12560}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _DESCRIPTION = """\ Data and Code for [``PHEE: A Dataset for Pharmacovigilance Event Extraction from Text``](https://arxiv.org/abs/2210.12560/)\ """ _URL = "https://raw.githubusercontent.com/ZhaoyueSun/PHEE/ceea192bc1f1da306980c39e53767176b1f8caec/data/json/" _URLS = { "train": _URL + "train.json", "test": _URL + "test.json", "dev": _URL + "dev.json", } class PHEEConfig(datasets.BuilderConfig): """BuilderConfig for PHEE.""" def __init__(self, **kwargs): """BuilderConfig for PHEE. Args: **kwargs: keyword arguments forwarded to super. """ super(PHEEConfig, self).__init__(**kwargs) class PHEE(datasets.GeneratorBasedBuilder): """PHEE: A Dataset for Pharmacovigilance Event Extraction from Text""" BUILDER_CONFIGS = [ PHEEConfig( name="json", version=datasets.Version("1.0.0", ""), description="processed structured data", ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, homepage="https://github.com/ZhaoyueSun/PHEE", features=datasets.Features( { "id": datasets.Value("string"), "context": datasets.Value("string"), "is_mult_event": datasets.Value("bool"), "annotations": [ { "events": [ { "event_id": datasets.Value("string"), "event_type": datasets.Value("string"), "event_data": datasets.Value("string"), } ] } ], } ), citation=_CITATION, task_templates=[ LanguageModeling( text_column="context", ) ], ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download_and_extract(_URLS) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), datasets.SplitGenerator(name='dev', gen_kwargs={"filepath": downloaded_files["dev"]}), ] def _generate_examples(self, filepath): """This function returns the examples parsed from json.""" logger.info("generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: for key, line in enumerate(f): obs = json.loads(line) yield key, { "id": obs["id"], "context": obs["context"], "is_mult_event": obs["is_mult_event"], "annotations": [ { "events": [ { "event_id": event["event_id"], "event_type": event["event_type"], "event_data": json.dumps(event), } for event in annotation["events"]] } for annotation in obs["annotations"]], }