sakshee05 commited on
Commit
0f7d0c3
·
verified ·
1 Parent(s): 72c6d79

Upload alphanumeric-audio-dataset.py

Browse files
Files changed (1) hide show
  1. alphanumeric-audio-dataset.py +75 -0
alphanumeric-audio-dataset.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pandas as pd
3
+ from datasets import Dataset, Audio
4
+
5
+ def load_metadata(metadata_path):
6
+ """Load the metadata CSV file."""
7
+ return pd.read_csv(metadata_path)
8
+
9
+ def generate_dataset_dict(metadata, audio_folder):
10
+ """
11
+ Generate the dataset dictionary by mapping metadata to corresponding audio files.
12
+ """
13
+ data = {
14
+ "file_name_id": [],
15
+ "audio": [],
16
+ "text": [],
17
+ "age": [],
18
+ "gender": [],
19
+ "nationality": [],
20
+ "native_language": [],
21
+ "familiarity_with_english": [],
22
+ "accent_strength": [],
23
+ "difficulties": [],
24
+ "recording_machine": [],
25
+ }
26
+
27
+ for id in metadata['Response_ID'].unique():
28
+
29
+ df_subset = metadata[metadata['Response_ID']==id]
30
+
31
+ # Collect audio paths for different categories
32
+ name_audio_path = df_subset['file_name'].iloc[0]
33
+ number_audio_path = df_subset['file_name'].iloc[2]
34
+ address_audio_path = df_subset['file_name'].iloc[1]
35
+
36
+ row = df_subset.iloc[0]
37
+
38
+ # Only include data if all three audio files exist
39
+ if name_audio_path and number_audio_path and address_audio_path:
40
+ data["file_name_id"].append(id)
41
+ data["audio"].append({
42
+ "name_audio": name_audio_path,
43
+ "number_audio": number_audio_path,
44
+ "address_audio": address_audio_path,
45
+ })
46
+ data["text"].append({
47
+ "name": row["Name"],
48
+ "number": row["Number"],
49
+ "address": row["Address"],
50
+ })
51
+ data["age"].append(row["Age"])
52
+ data["gender"].append(row["Gender"])
53
+ data["nationality"].append(row["Nationality"])
54
+ data["native_language"].append(row["Native Language"])
55
+ data["familiarity_with_english"].append(row["Familiarity with English"])
56
+ data["accent_strength"].append(row["Accent Strength (Self reported)"])
57
+ data["difficulties"].append(row["Difficulties"])
58
+ data["recording_machine"].append(row["Recording Machine"])
59
+
60
+ return data
61
+
62
+ def load_dataset(metadata_path="metadata.csv", audio_folder="audio_data"):
63
+ """
64
+ Load the dataset, mapping metadata to audio and other fields.
65
+ """
66
+ metadata = load_metadata(metadata_path)
67
+ dataset_dict = generate_dataset_dict(metadata, audio_folder)
68
+
69
+ # Use the Audio feature from the Hugging Face Datasets library
70
+ return Dataset.from_dict(dataset_dict).cast_column("audio", Audio())
71
+
72
+ if __name__ == "__main__":
73
+ # Load the dataset and print a sample
74
+ dataset = load_dataset()
75
+ print(dataset)