
EleutherAI, Hugging Face
Safetensors Library
Security Assessment

May 3, 2023

Prepared for:

Stella Biderman
EleutherAI

Nicolas Patry
Hugging Face

Garry Jean-Baptiste
Stability AI

Prepared by: Fredrik Dahlgren, Suha Hussain, Heidy Khlaaf, and Evan Sultanik

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high- end security research with a real -world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes, the Linux kernel, and the
free AlgoVPN software.

We specialize in software testing, code review, and threat modeling projects, supporting
client organizations in the technology, defense, and finance industries, as well as
government entities. Notable clients include HashiCorp, Google, Microsoft, Western Digital,
and Zoom.

In addition to dedicated teams focusing on application security, cryptography, blockchain
security, and emerging platforms security, Trail of Bits has a machine learning (ML) practice
that creates tools and techniques for the exploration of new attack surfaces and failures
that can lead to the degradation of model performance, exploitation of ML system assets,
and manipulation or lack of robustness of resulting ML outputs. Trail of Bits has also
created and maintains more than 200 free and open-source tools (available in our GitHub
repositories) and offers research and engineering services for the public and private
sectors.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, LangSec, the Linux Security Summit, the
O’Reilly Security Conference, PyCon, RWC, REcon, and SummerCon.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
228 Park Ave S #80688
New York, NY 10003
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 EleutherAI Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2023 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to EleutherAI
under the terms of the project statement of work and has been made public at EleutherAI’s
request. Material within this report may not be reproduced or distributed in part or in
whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 EleutherAI Security Assessment
PUBLIC

https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Executive Summary 4
Summary of Recommendations 6
Project Summary 8
Project Targets 9
Project Goals 10
Project Coverage 11
Automated Testing 12
Codebase Maturity Evaluation 15
Summary of Findings 17
Detailed Findings 18

1. Tensor offsets are not checked against the total size of the tensor data 18
2. Tensor size calculations may overflow in Metadata::validate 20
3. The safetensors library allows zero-sized tensors 22
4. The SliceIterator type does not validate tensor indexers against the tensor shape

24
5. Insufficient test coverage against adversarial inputs 27
6. Serialization can panic on malformed JSON 29
7. Underspecified JSON behavior can lead to parser differentials 31
8. PyTorch conversion utility is vulnerable to arbitrary code execution 33
9. Python dependencies are not semantically versioned 35
10. The safetensors library does not check for exceptional values 37

A. Vulnerability Categories 38
B. Code Maturity Categories 40
C. Automated Testing 42
D. Property Testing with Proptest 47
E. Property Testing with Hypothesis 50
F. File Format Polyglots 51
G. Code Quality Recommendations 52
H. Fix Review Results 54

Detailed Fix Review Results 56

Trail of Bits 3 EleutherAI Security Assessment
PUBLIC

Executive Summary

Engagement Overview
EleutherAI engaged Trail of Bits to review the security of the Hugging Face safetensors
library. From March 20 to March 24, 2023, a team of two consultants conducted a security
review of the client-provided source code, with two person-weeks of effort. Details of the
project’s timeline, test targets, and coverage are provided in subsequent sections of this
report.

Project Scope
Our testing efforts were focused on the identification of flaws that could result in a
compromise of confidentiality, integrity, or availability of the target system. We conducted
this audit with access to both source code and documentation for the safetensors
library. We performed static and dynamic testing of the codebase, using both automated
and manual processes.

Summary of Findings
The audit uncovered significant flaws that could impact system confidentiality, integrity, or
availability. A summary of the findings and details on notable findings are provided below.

EXPOSURE ANALYSIS

Severity Count

High 0

Medium 3

Low 3

Informational 3

Undetermined 1

CATEGORY BREAKDOWN

Category Count

Data Validation 9

Patching 1

Trail of Bits 4 EleutherAI Security Assessment
PUBLIC

Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

● TOB-SFTN-1
The tensor metadata in the safetensors file header is not sufficiently validated
against the size of the data section, which contains the actual tensor data. As a
result, it is possible to append arbitrary data to a safetensors file and have the file
remain valid.

An attacker could create a polyglot safetensors file (i.e., a safetensors file that is
simultaneously valid under another file format such as PDF, ZIP, Keras, or
TFRecords). This is problematic because two different machine learning pipelines
that read safetensors model files could parse the same maliciously crafted file as
two different models.

Trail of Bits 5 EleutherAI Security Assessment
PUBLIC

Summary of Recommendations

The safetensors library and the corresponding file format help provide users with a safer
and more performant file format for machine learning models. Trail of Bits recommends
that Hugging Face address the findings detailed in this report and take the following
additional steps to further improve the library:

● The safetensors file format is currently underspecified, and multiple issues in the
report reflect different aspects of this wider issue. Some questions that are currently
not answered by the existing specification include the following:

a. Which subset of JSON is permitted? The JSON RFC and standard are
underspecified, and each implementation treats specification ambiguities
differently. For example, the serde_json crate used to parse JSON rejects
JSON with duplicate keys, but other JSON parsers typically allow duplicate
keys, with no standard behavior across parsers.

JSON parsers are inconsistent due to the underspecified nature of the JSON
RFC and standard, which can lead to differentials between safetensors
implementations. Currently, the Hugging Face safetensors reference
implementation delegates JSON parsing responsibility to the serde library. If
the behavior of serde ever changes (e.g., if it changes its default behavior
when handling duplicate keys), then this will change the semantics of
safetensors parsing. Such a change is not unheard of. For example, the
UltraJSON library (used by the independent, pure Python implementation
pysafetensors) has internally inconsistent handling of Unicode escapes
throughout its version history.

b. Are zero-length tensors allowed? The current implementation allows equal
start and end tensor offsets and zero-length shapes (or alternatively, shapes
where one of the dimensions is zero).

c. Are not-a-number (NaN) or infinity (Inf) floating point values allowed? The
library does not validate the data in the data section, so floating point values
could be exceptional values such as NaN or ±Inf.

d. Should each byte in the data section correspond to a tensor defined by the
header? The current implementation checks that tensors are laid out
consecutively in the data section but fails to ensure that there is no data
following the last tensor. This means that arbitrary data can be appended to
a safetensors file without rendering it invalid.

Trail of Bits 6 EleutherAI Security Assessment
PUBLIC

https://github.com/KOLANICH-libs/pysafetensors

All these issues could lead to parser differentials between different safetensors
parsers.

In the short term, Trail of Bits recommends that Hugging Face document the
safetensors file format and make this documentation widely available. We also
recommend that test cases be made available to ensure that different parsers agree
on what is a valid safetensors file.

In the long term, Trail of Bits recommends that Hugging Face abandon the use of
JSON in the next version of the safetensors file format and replace it with a custom
binary representation. This would avoid the many ambiguities introduced by the
JSON format and would also allow the safetensors file format to be fully specified in
a DSL such as Kaitai Struct, which automatically generates parsers in any language.

● It is common for file formats to include a signature at the start of the file to make
files easier to recognize for applications handling multiple different file formats.
Including a signature also helps prevent the construction of polyglot files that could
be interpreted differently by different applications. Additionally, it is common to
include a file format version that allows the format to be updated and extended
over time. The safetensors file format has neither of these protections.

We recognize that the safetensors file format is already used to serialize and
transmit machine learning models. However, we still recommend that Hugging Face
add a signature and version number to the format before wider adoption across the
community.

● The safetensors library contains unit tests with good coverage of the
implementation’s happy paths. However, there are too few tests exercising the
codebase’s failure paths, so the behavior of the codebase on adversarial inputs is
undertested. We recommend that Hugging Face extend the test suite with tests for
various edge cases and invalid inputs. To improve coverage, we recommend using
property testing frameworks such as proptest and Hypothesis. (For an example
on how to use proptest, see appendix D. For an example on how to use
Hypothesis, see appendix E)

Trail of Bits 7 EleutherAI Security Assessment
PUBLIC

https://kaitai.io/
https://docs.rs/proptest/latest/proptest/
https://hypothesis.readthedocs.io/en/latest/

Project Summary

Contact Information
The following managers were associated with this project:

Dan Guido, Account Manager Brooke Langhorne, Project Manager
dan@trailofbits.com brooke.langhorne@trailofbits.com

The following engineers were associated with this project:

Fredrik Dahlgren, Consultant Suha Hussain, Consultant
fredrik.dahlgren@trailofbits.com suha.hussain@trailofbits.com

Heidy Khlaaf, Consultant Evan Sultanik, Consultant
heidy.khlaaf@trailofbits.com evan.sultanik@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

March 15, 2023 Pre-project kickoff call

March 27, 2023 Delivery of report draft

March 27, 2023 Report readout meeting

April 26, 2023 Fix review

May 3, 2023 Delivery of final report

Trail of Bits 8 EleutherAI Security Assessment
PUBLIC

mailto:dan@trailofbits.com

Project Targets

The engagement involved a review and testing of the following target.

safetensors

Repository https://github.com/huggingface/safetensors

Version 5c1d366813e46c6f9f2c71aa8b89e0c916a92b2f

Type Rust, Python

Platform Multiple

Trail of Bits 9 EleutherAI Security Assessment
PUBLIC

https://github.com/huggingface/safetensors

Project Goals

The engagement was scoped to provide a security assessment of the safetensors library
developed by Hugging Face. Specifically, we sought to answer the following non-exhaustive
list of questions:

● Does the safetensors library contain vulnerabilities that an attacker could
leverage to remotely execute code or execute denial-of-service attacks?

● Does the safetensors library perform sufficient input validation during
deserialization?

● Does the codebase have sufficient test coverage, and are there tests for invalid or
adversarial inputs?

● Is the safetensors file format sufficiently specified, or are there unclarities in the
specification that could lead to parser differentials or facilitate the creation of
polyglots?

Trail of Bits 10 EleutherAI Security Assessment
PUBLIC

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches and their results include the following:

● We ran static analysis tools on the safetensors library and the Python bindings to
identify code quality issues, outdated dependencies, and dependencies containing
known vulnerabilities.

● We reviewed the test coverage for the unit and integration tests shipped with the
library.

● We manually reviewed the safetensors library and Python bindings, focusing on
data validation and memory safety issues.

● We wrote property tests for the safetensors library and Python bindings to ensure
that the serialization and deserialization processes are inverses of each other.

Trail of Bits 11 EleutherAI Security Assessment
PUBLIC

Automated Testing

Trail of Bits uses automated techniques to extensively test the security properties of
software. We use both open-source static analysis and fuzzing utilities, along with tools
developed in house, to perform automated testing of source code and compiled software.

Test Harness Configuration
We used the following tools in the automated testing phase of this project:

Tool Description Policy

Clippy An open-source Rust linter used to catch common
mistakes and unidiomatic Rust code

Appendix C

Dylint An open-source Rust linter developed by Trail of
Bits to identify common code quality issues and
mistakes in Rust code

Appendix C

Semgrep An open-source static analysis tool for finding bugs
and enforcing code standards when editing or
committing code and during build time

Appendix C

cargo-audit A Cargo plugin for reviewing project dependencies
for known vulnerabilities

Appendix C

cargo-geiger A tool that lists statistics related to the use of
unsafe Rust code in a Rust crate and all its
dependencies

Appendix C

cargo-outdated A Cargo plugin that identifies project dependencies
with newer versions available

Appendix C

cargo-llvm-cov A Cargo plugin for generating LLVM source-based
code coverage

Appendix C

pip-audit A tool developed by Trail of Bits and Google for Appendix C

Trail of Bits 12 EleutherAI Security Assessment
PUBLIC

https://github.com/rust-lang/rust-clippy
https://github.com/trailofbits/dylint
https://github.com/returntocorp/semgrep
https://github.com/RustSec/rustsec/tree/main/cargo-audit
https://github.com/rust-secure-code/cargo-geiger
https://github.com/kbknapp/cargo-outdated
https://github.com/taiki-e/cargo-llvm-cov
https://pypi.org/project/pip-audit/

scanning Python environments for packages with
known vulnerabilities

mypy A Python type checker that can statically infer many
type errors

Appendix C

Areas of Focus
Our automated testing and verification work focused on detecting the following issues:

● General code quality issues and unidiomatic code patterns

● Issues related to error handling and the use of unwrap and expect

● Moderate use of unsafe code

● Poor unit and integration test coverage

● General issues with dependency management and known vulnerable dependencies

Test Results
The results of this focused testing are detailed below.

safetensors library and Python bindings. We ran several static-analysis tools such as
Clippy, Dylint, and Semgrep to identify potential code quality issues in the codebase. We
then used the Cargo plugins cargo-geiger, cargo-outdated, and cargo-audit to
detect the use of unsafe Rust and review general dependency management practices.
Finally, we ran cargo-llvm-cov to review the unit and integration test coverage for the
library and Python bindings.

Property Tool Result

The project adheres to Rust best practices by fixing
code quality issues reported by linters such as Clippy.

Clippy Passed

The project does not contain any vulnerable code
patterns identified by Dylint.

Dylint Passed

The project’s use of panicking functions such as unwrap Semgrep TOB-SFTN-6

Trail of Bits 13 EleutherAI Security Assessment
PUBLIC

https://www.mypy-lang.org/

and expect is limited.

The project contains a reasonable amount of unsafe
code for what the implementation is trying to achieve.

cargo-geiger Passed

To avoid technical debt, the project continually updates
dependencies as new versions are released.

cargo-outdated Passed

The project does not depend on any libraries with
known vulnerabilities.

cargo-audit Passed

pip-audit TOB-SFTN-9

All components of the codebase have sufficient test
coverage.

cargo-llvm-cov TOB-SFTN-5

The Python bindings do not have any type confusion
errors.

mypy Appendix G

Trail of Bits 14 EleutherAI Security Assessment
PUBLIC

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic The safetensors library relies mainly on unchecked
arithmetic, even when performing calculations on
untrusted inputs. This could lead to reliability issues or
panics when the library is used to parse untrusted data.

Weak

Auditing The library contains no auditing or event logging. Not
Applicable

Complexity
Management

The codebase is well structured, and the code uses the
Rust trait system and Rust macros to avoid code
duplication.

Satisfactory

Configuration The library has no configuration. Not
Applicable

Data Handling The safetensors library performs some validation of
the input data during deserialization, but there are
several locations where validation is insufficient or
completely missing. This may lead to reliability issues or
panics when the library is used to parse untrusted input.

Weak

Documentation The codebase is sufficiently documented, but in some
cases, the documentation is outdated and refers to
features that are missing from the version under review.
We also found that the documentation of the safetensors
file format is lacking. This could lead to parser
differentials and facilitate the creation of safetensors

Weak

Trail of Bits 15 EleutherAI Security Assessment
PUBLIC

polyglots (files that are at least two valid file types at
once) and so-called schizophrenic files (models that are
interpreted differently by different safetensors
implementations).

Maintenance The codebase generates very few warnings when using
static analysis tools such as Clippy and Dylint. There are
no outdated dependencies or dependencies with known
vulnerabilities that are exploitable from safetensors.
However, the majority of the Python dependencies are
not pinned to a version, so depending on the
environment, vulnerable versions could be installed.

Moderate

Memory Safety
and Error
Handling

The safetensors library contains no unsafe code, and
the Python bindings contain only a minimal amount of
unsafe code related to memory mapping. Errors are
expressive, using custom Rust enums for error types. The
library typically propagates errors to the caller and
contains limited use of panicking functions such as
unwrap and expect.

Strong

Testing and
Verification

The library has good test coverage and also contains
fuzzers that exercise deserialization and the Python
bindings. However, the library does not contain enough
tests for adversarial inputs that target the codebase’s
failing code paths, so the library’s behavior on malicious
inputs is largely untested.

Moderate

Trail of Bits 16 EleutherAI Security Assessment
PUBLIC

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Tensor offsets are not checked against the total
size of the tensor data

Data Validation Medium

2 Tensor size calculations may overflow in
Metadata::validate

Data Validation Medium

3 The safetensors library allows zero-sized tensors Data Validation Informational

4 The SliceIterator type does not validate tensor
indexers against the tensor shape

Data Validation Low

5 Insufficient test coverage against adversarial
inputs

Data Validation Medium

6 Serialization can panic on malformed JSON Data Validation Informational

7 Underspecified JSON behavior can lead to parser
differentials

Data Validation Low

8 PyTorch conversion utility is vulnerable to
arbitrary code execution

Data Validation Undetermined

9 Python dependencies are not semantically
versioned

Patching Low

10 The safetensors library does not check for
exceptional values

Data Validation Informational

Trail of Bits 17 EleutherAI Security Assessment
PUBLIC

Detailed Findings

1. Tensor o�sets are not checked against the total size of the tensor data

Severity: Medium Difficulty: Low

Type: Data Validation Finding ID: TOB-SFTN-1

Target: safetensors/safetensors/src/tensor.rs

Description
The Metadata::validate function validates that the tensors are laid out consecutively by
checking the start and end offsets for each tensor. However, these offsets are not checked
against the total size of the input buffer, so it may be possible to pass an input buffer that
is too large or too small to Safetensors::deserialize.

If the input buffer is too large, it could allow the construction of polyglots, which could be
used to confuse downstream consumers of the API. If the input buffer is too small, it would
lead to a panic when the corresponding tensor is accessed in Safetensors::tensor.

pub fn tensor(&self, tensor_name: &str) -> Result<TensorView<'_>, SafeTensorError> {
if let Some(index) = &self.metadata.index_map.get(tensor_name) {

if let Some(info) = &self.metadata.tensors.get(**index) {
Ok(TensorView {

dtype: info.dtype,
shape: info.shape.clone(),
data: &self.data[info.data_offsets.0..info.data_offsets.1],

})
} else {

Err(SafeTensorError::TensorNotFound(tensor_name.to_string()))
}

} else {
Err(SafeTensorError::TensorNotFound(tensor_name.to_string()))

}
}

Figure 1.1: Since the tensor offsets have not been checked against the total size of the input,
indexing into the SafeTensor data field may panic.

Exploit Scenario 1
A malicious user appends a Keras file to a safetensors file, thereby creating a polyglot file
that is simultaneously a safetensors file and a Keras file. The file is recognized as valid but is
loaded differently by different applications because some applications recognize and load
the file as a Keras file, and others recognize and load it as a safetensors file.

Trail of Bits 18 EleutherAI Security Assessment
PUBLIC

To illustrate this issue, this report is simultaneously a valid PDF and a valid ZIP file. Unzip
this report to reveal four example safetensors polyglots with the Keras native, PDF, ZIP, and
TFRecords file formats (see appendix F).

Exploit Scenario 2
A malicious user creates a safetensors file with an empty data section. Since the size of the
data section is not validated when the file is read, the file is deserialized without issues.
However, when the first tensor data is accessed, the implementation indexes out of
bounds and panics.

Recommendations
Short term, modify the Metadata::validate function so that it validates tensor offsets
against the size of the data section during deserialization. The function should ensure that
all offsets fall within the data section and that all data in the data section corresponds to
tensors defined by the header.

Long term, document the safetensors file format to describe how parsers should handle
files with extra data appended to the data section.

Trail of Bits 19 EleutherAI Security Assessment
PUBLIC

2. Tensor size calculations may overflow in Metadata::validate

Severity: Medium Difficulty: Low

Type: Data Validation Finding ID: TOB-SFTN-2

Target: safetensors/safetensors/src/tensor.rs

Description
The Metadata::validate method computes the serialized size of each tensor by
multiplying the size of the data by the product of the tensor’s dimensions. Since Rust does
not check for integer overflows in release builds, this computation may overflow and
produce the wrong result.

fn validate(&self) -> Result<(), SafeTensorError> {
let mut start = 0;
for (i, info) in self.tensors.iter().enumerate() {

let (s, e) = info.data_offsets;
if s != start || e < s {

let tensor_name = self
.index_map
.iter()
.filter_map(|(name, &index)|

if index == i { Some(&name[..]) } else { None })
.next()
.unwrap_or("no_tensor");

return Err(SafeTensorError::InvalidOffset(tensor_name.to_string()));
}
start = e;
let nelements: usize = info.shape.iter().product();
let nbytes = nelements * info.dtype.size();
if (e - s) != nbytes {

return Err(SafeTensorError::TensorInvalidInfo);
}

}

Ok(())
}

Figure 2.1: The computations of nelements and nbytesmay
overflow and produce an invalid result.

Exploit Scenario
A malicious user creates an invalid safetensors file where the calculation of the number of
elements overflows but the computed number of bytes still matches the given tensor

Trail of Bits 20 EleutherAI Security Assessment
PUBLIC

offsets. As a result, the file is deserialized without issues but panics on an out-of-bounds
access when the tensor is used together with the SliceIterator API.

Recommendations
Short term, use checked arithmetic for all arithmetic operations during deserialization, and
have the code validate the result whenever possible.

Long term, extend the test suite to test for more types of invalid safetensors files. Consider
using property testing to obtain better test coverage.

Trail of Bits 21 EleutherAI Security Assessment
PUBLIC

3. The safetensors library allows zero-sized tensors

Severity: Informational Difficulty: Low

Type: Data Validation Finding ID: TOB-SFTN-3

Target: safetensors/safetensors/src/tensor.rs

Description
The tensor metadata is validated by Metadata::validate. This method checks the start
and end offsets (s, e) specified for each tensor and rejects the input if e is less than s.
However, the function will accept empty tensors where s is equal to e if the tensor shape
contains 0.

fn validate(&self) -> Result<(), SafeTensorError> {
let mut start = 0;
for (i, info) in self.tensors.iter().enumerate() {

let (s, e) = info.data_offsets;
if s != start || e < s {

let tensor_name = self
.index_map
.iter()
.filter_map(|(name, &index)|

if index == i { Some(&name[..]) } else { None })
.next()
.unwrap_or("no_tensor");

return Err(SafeTensorError::InvalidOffset(tensor_name.to_string()));
}
start = e;
let nelements: usize = info.shape.iter().product();
let nbytes = nelements * info.dtype.size();
if (e - s) != nbytes {

return Err(SafeTensorError::TensorInvalidInfo);
}

}

Ok(())
}

Figure 2.1: If s is equal to e and info.shape contains 0, the tensor will be accepted as valid.

The method also allows empty shapes (with length 0) if e minus s equals
info.dtype.size().

Trail of Bits 22 EleutherAI Security Assessment
PUBLIC

Recommendations
Short term, have the code ensure that e is strictly greater than s and check that
info.shape() is non-empty in Metadata::validate.

Long term, improve the documentation for the safetensors file format to clarify whether it
allows zero-length tensors (and zero-length shapes).

Trail of Bits 23 EleutherAI Security Assessment
PUBLIC

4. The SliceIterator type does not validate tensor indexers against the tensor
shape

Severity: Low Difficulty: Low

Type: Data Validation Finding ID: TOB-SFTN-4

Target: safetensors/safetensors/src/slice.rs

Description
The SliceIterator::new method takes a set of intervals (given as TensorIndexers) as
input. The iterator then iterates through the values in the hypercube defined by the given
intervals. However, the SliceIterator constructor fails to validate the interval endpoints.

// [...]
for (i, &shape) in view.shape().iter().enumerate().rev() {

if i >= slices.len() {
// We are not slicing yet, just increase the local span
newshape.push(shape);

} else {
let slice = &slices[i];
let (start, stop) = match slice {

TensorIndexer::Narrow(Bound::Unbounded, Bound::Unbounded) =>
(0, shape),

TensorIndexer::Narrow(Bound::Unbounded, Bound::Excluded(stop)) =>
(0, *stop),

TensorIndexer::Narrow(Bound::Unbounded, Bound::Included(stop)) =>
(0, *stop + 1)

// [...]
};
newshape.push(stop - start);
if indices.is_empty() {

if start == 0 && stop == shape {
// We haven't started to slice yet, just increase the span

} else {
let offset = start * span;
let small_span = stop * span - offset;
indices.push((offset, offset + small_span));

}
} else {

let mut newindices = vec![];
for n in start..stop {

let offset = n * span;
for (old_start, old_stop) in &indices {

newindices.push((old_start + offset, old_stop + offset));
}

}

Trail of Bits 24 EleutherAI Security Assessment
PUBLIC

indices = newindices;
}

}
span *= shape;

}
// [...]

Figure 4.1: The interval endpoints start and stop are not checked against the tensor shape.

This could lead to a panic during iteration in SliceIterator::next or result in invalid
data being passed back to the user.

impl<'data> Iterator for SliceIterator<'data> {
type Item = &'data [u8];

fn next(&mut self) -> Option<Self::Item> {
// TODO We might want to move the logic from `new`
// here actually to remove the need to get all the indices
// upfront.
let (start, stop) = self.indices.pop()?;
Some(&self.view.data()[start..stop])

}
}

Figure 4.2: Since the original interval endpoints are not checked against the dimensions of the
tensor, SliceIterator::nextmay panic when indexing into the tensor data.

Since both start and stop may be arbitrarily large in SliceIterator::new, this issue
could also lead to overflows when the offsets into the data sections are calculated in
SliceIterator::new.

The same type of issue is present in the get_tensor implementation in the Python
bindings.

pub fn get_tensor(&self, name: &str) -> PyResult<PyObject> {
let tensors = self.metadata.tensors();
let info = tensors.get(name).ok_or_else(|| {

SafetensorError::new_err(format!("File does not contain tensor {name}",))
})?;

match &self.storage.as_ref() {
Storage::Mmap(mmap) => {

let data =
&mmap[info.data_offsets.0 + self.offset..

info.data_offsets.1 + self.offset];

let array: PyObject = Python::with_gil(|py|
PyByteArray::new(py, data).into_py(py));

create_tensor(

Trail of Bits 25 EleutherAI Security Assessment
PUBLIC

&self.framework,
info.dtype,
&info.shape,
array,
&self.device,

)
}
// [...]

Figure 4.3: The Python bindings slice into the tensor data without validating the interval offsets.

Recommendations
Short term, for the interval endpoints (start, stop), have the SliceIterator
constructor ensure that start is less than stop and that stop is less than the relevant
dimension. Have the get_tensor function return an error if the validation fails.

Long term, replace all arithmetic on untrusted values with their checked counterparts.

Trail of Bits 26 EleutherAI Security Assessment
PUBLIC

5. Insu�cient test coverage against adversarial inputs

Severity: Medium Difficulty: Not Applicable

Type: Data Validation Finding ID: TOB-SFTN-5

Target: safetensors/safetensors/src/slice.rs

Description
The average line coverage for the safetensors crate is over 87%, which is sufficient, but
the crate contains very few test cases exercising the implementation’s failure paths. This
means that the library's behavior on adversarial input is largely untested.

Figure 5.1: Many of the failing code paths of Safetensors::read_metadata are untested.

Trail of Bits 27 EleutherAI Security Assessment
PUBLIC

Exploit Scenario
A user uploads a maliciously crafted safetensors model to the Hugging Face hub. When the
model is parsed, the safetensors library panics because of a previously undetected edge
case in the implementation.

Recommendations
Short term, write test cases that exercise the failure paths of the safetensors crate.

Long term, regularly run cargo llvm-cov to get test coverage data. Ensure that all
functions are covered and that the crate includes ample tests against adversarial inputs.

Trail of Bits 28 EleutherAI Security Assessment
PUBLIC

6. Serialization can panic on malformed JSON

Severity: Informational Difficulty: Low

Type: Data Validation Finding ID: TOB-SFTN-6

Target: safetensors/safetensors/src/tensor.rs

Description
The serialization data preparation function prepare performs an unchecked call to unwrap
on an option that will be None if the data_info mapping cannot be serialized to JSON.

fn prepare<
S: AsRef<str> + Ord + std::fmt::Display,
V: View, I: IntoIterator<Item = (S, V)>>

(
data: I,
data_info: &Option<HashMap<String, String>>,

) -> Result<(PreparedData, Vec<V>), SafeTensorError> {
// [...]

let mut hmetadata = Vec::with_capacity(data.len());
// [...]

let metadata: Metadata = Metadata::new(data_info.clone(), hmetadata)?;
let mut metadata_buf = serde_json::to_string(&metadata).unwrap().into_bytes();

Figure 6.1: The call to unwrap on line 179 will panic if the JSON in data_info is malformed.
(safetensors/safetensors/src/tensor.rs#150–179)

This finding’s severity is set to informational because we could not devise an input to
data_info that could not be serialized to JSON with serde_json::to_string. However,
if such an input were discovered, the serialization would panic on line 179 of figure 6.1. A
future update to serde could also change its behavior, inducing a panic. This is described
in more detail in the following finding (TOB-SFTN-7).

Exploit Scenario
A metadata hashmap that cannot be encoded in JSON by the serde library is serialized.
The prepare function panics on line 179, rather than returning an error.

Recommendations
Short term, have the prepare function check the output of serde_json::to_string for
errors before unwrapping it.

Trail of Bits 29 EleutherAI Security Assessment
PUBLIC

https://github.com/huggingface/safetensors/blob/454924be76cb1c3c8c270dd775fc4c8280ae3ebd/safetensors/src/tensor.rs#L150-L179

Long term, consider abandoning the use of JSON in a subsequent version of safetensors.
Since the JSON schema used by safetensors is relatively simple, use a custom binary
encoding to allow safetensors to be fully specified in a DSL such as Kaitai Struct, which
automatically generates parsers in any language.

Trail of Bits 30 EleutherAI Security Assessment
PUBLIC

https://kaitai.io/

7. Underspecified JSON behavior can lead to parser di�erentials

Severity: Low Difficulty: Low

Type: Data Validation Finding ID: TOB-SFTN-7

Target: safetensors/safetensors/src/tensor.rs

Description
The JSON RFC, the JSON standard, and the safetensors documentation do not explicitly
specify how to handle duplicate keys in the JSON dictionary. The safetensors reference
implementation uses serde for JSON parsing, which rejects JSON inputs with duplicate
keys. This behavior is not common; most other JSON parsers silently keep either the first or
last duplicate. Python’s built-in JSON parser does the latter and keeps the last key-value
pair in the event of a collision. On the other hand, the popular high-performance Golang
JSON parser buger/jsonparser has first-key precedence, so it would result in different
values than the Python parsers.

There are already independent implementations of the safetensors file format. For
example, there is a pure Python parser and associated safetensors JSON schema validator.
As shown in figure 7.1, these implementations use either the built-in Python JSON parser or
UltraJSON library, both of which accept JSON with duplicate keys without raising a
warning.

7 try:
8 import ujson as json
9 except ImportError:
10 import json

Figure 7.1: The pure Python safetensors parser uses different
JSON semantics than the reference implementation.

(pysafetensors/pysafetensors/kaitai/safe_tensors_parsed_header.py#7–10)

The risk of differentials between safetensors implementations is not solely based on
discrepancies in duplicate key handling. JSON implementations have historically differed on
interpretation of Unicode escapes, large numbers, and representations of infinity (Inf) and
not-a-number (NaN) (see references below).

Exploit Scenario
A safetensors model that contains duplicate keys is created. This model is rejected by the
Hugging Face reference implementation but accepted and even validated by third-party
tools such as pysafetensors. Another third-party parser uses buger/jsonparser for

Trail of Bits 31 EleutherAI Security Assessment
PUBLIC

https://www.rfc-editor.org/rfc/rfc4627#section-2.2
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://github.com/serde-rs/json
https://github.com/buger/jsonparser
https://github.com/KOLANICH-libs/pysafetensors
https://github.com/KOLANICH-libs/safetensors_schema.py
https://github.com/ultrajson/ultrajson
https://github.com/KOLANICH-libs/pysafetensors/blob/master/pysafetensors/kaitai/safe_tensors_parsed_header.py#L7-L10

JSON deserialization, allowing users to construct safetensors model files that load one set
of tensors in one implementation and a completely different set of tensors in another
implementation.

Recommendations
Short term, create a rigorous file format specification that explicitly prohibits duplicate
JSON keys. File bug reports with third-party tools that do not conform to the specification.

Long term, consider abandoning the use of JSON in a subsequent version of safetensors.
Since the JSON schema used by safetensors is relatively simple, use a custom binary
encoding that allows safetensors to be fully specified in a DSL such as Kaitai Struct, which
automatically generates parsers in any language.

References
● Jake Miller. An Exploration of JSON Interoperability Vulnerabilities, Bishop Fox blog.

February 25, 2021.

● Nicolas Seriot. Parsing JSON is a Minefield, Nicolas Seriot’s blog. October 26, 2016.

Trail of Bits 32 EleutherAI Security Assessment
PUBLIC

https://kaitai.io/
https://bishopfox.com/blog/json-interoperability-vulnerabilities
https://seriot.ch/projects/parsing_json.html

8. PyTorch conversion utility is vulnerable to arbitrary code execution

Severity: Undetermined Difficulty: Low

Type: Data Validation Finding ID: TOB-SFTN-8

Target: safetensors/bindings/python/convert.py

Description
The convert_file function uses the PyTorch torch.load() method, which is known to
be insecure. The method’s weights_only parameter is not set to True, which means that
the pickle module is used to load the model in an unrestricted fashion. It is thus possible
to construct malicious pickle data that will execute arbitrary code during unpickling when
converting a PyTorch model to a safetensors format.

112 def convert_file(
113 pt_filename: str,
114 sf_filename: str,
115):
116 loaded = torch.load(pt_filename, map_location="cpu")
117 if "state_dict" in loaded:
118 loaded = loaded["state_dict"]

Figure 8.1: The torch.load()method is used unsafely since the weights_only parameter is
not set to True. (safetensors/bindings/python/convert.py#112–118)

Exploit Scenario
An attacker uploads a maliciously crafted PyTorch model to the Hugging Face hub. Since
the conversion script invokes torch.load() in an unsafe manner, the model allows the
attacker to execute arbitrary code on the hub when the model is converted to a
safetensors file.

We do not know if the script is currently deployed on the Hugging Face hub or, if it is
deployed, what security mitigations are in place to protect the system against this type of
attack, so the severity of this issue is marked as undetermined.

Recommendations
Short term, add documentation warning users not to run the convert.py script on
untrusted data.

The current documentation for this script notes that the new safetensors file “is equivalent
to pytorch_model.bin but safe in the sense that no arbitrary code can be put into it.”

Trail of Bits 33 EleutherAI Security Assessment
PUBLIC

https://github.com/huggingface/safetensors/blob/5c1d366813e46c6f9f2c71aa8b89e0c916a92b2f/bindings/python/convert.py#L112-L118

However, it does not warn users that it is still possible for an attacker to execute arbitrary
code on the system where the conversion tool is used.

Long term, if possible, change the use of torch.load() to enable weights_only.
Alternatively, remove the script from the repository.

Trail of Bits 34 EleutherAI Security Assessment
PUBLIC

9. Python dependencies are not semantically versioned

Severity: Low Difficulty: Low

Type: Patching Finding ID: TOB-SFTN-9

Target: safetensors/bindings/python/setup.py

Description
The majority of dependencies for the Python bindings are not constrained to a minimum
version.

IMPORTANT:
1. all dependencies should be listed here with their version requirements if any
_deps = [

"black==22.3",
"click==8.0.4",
"flake8>=3.8.3",
"flax",
"h5py",
"huggingface_hub",
"isort>=5.5.4",
"jax",
"numpy",
"setuptools_rust",
"pytest",
"pytest-benchmark",
"tensorflow",
"torch",
"paddlepaddle",

]

Figure 9.1: The majority of Python dependencies are unversioned.
(safetensors/bindings/python/setup.py#7–25)

The package resolution engine (e.g., pip) is free to install older, vulnerable versions of
dependencies as necessary due to the Python environment’s external requirements. For
example, all but the latest version of paddlepaddle are vulnerable to a critical arbitrary
code execution vulnerability.

Exploit Scenario
The safetensors library is installed with an older, vulnerable version of a dependency
that is exploitable through the safetensors API.

Recommendations
Short term, pin to a version of each dependency that has no known vulnerabilities.

Trail of Bits 35 EleutherAI Security Assessment
PUBLIC

https://github.com/huggingface/safetensors/blob/5c1d366813e46c6f9f2c71aa8b89e0c916a92b2f/bindings/python/setup.py#L7-L25
https://nvd.nist.gov/vuln/detail/CVE-2022-46742
https://nvd.nist.gov/vuln/detail/CVE-2022-46742

Long term, integrate pip-audit (e.g., using its official GitHub action), as well as
Dependabot, into the safetensors CI pipeline.

Trail of Bits 36 EleutherAI Security Assessment
PUBLIC

https://github.com/pypa/pip-audit#github-actions
https://github.com/dependabot

10. The safetensors library does not check for exceptional values

Severity: Informational Difficulty: Not Applicable

Type: Data Validation Finding ID: TOB-SFTN-10

Target: safetensors/safetensors/src/tensor.rs

Description
The safetensors library does not validate the individual tensors during deserialization.
This means that floating point tensors may contain NaN or ±Inf values. This is not
documented anywhere and may lead to issues for downstream consumers of the
safetensors API.

Recommendations
Short term, document which security guarantees are provided by the library to
downstream consumers.

Long term, provide documentation for the safetensors file format, as well as a compatibility
test suite of examples that could be used to ensure that third-party parsers are compatible
with the Hugging Face implementation.

Trail of Bits 37 EleutherAI Security Assessment
PUBLIC

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 38 EleutherAI Security Assessment
PUBLIC

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 39 EleutherAI Security Assessment
PUBLIC

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Configuration The configuration of system components in accordance with best
practices

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Data Handling The safe handling of user inputs and data processed by the system

Documentation The presence of comprehensive and readable codebase documentation

Maintenance The timely maintenance of system components to mitigate risk

Memory Safety
and Error Handling

The presence of memory safety and robust error-handling mechanisms

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Trail of Bits 40 EleutherAI Security Assessment
PUBLIC

Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.

Satisfactory Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

Trail of Bits 41 EleutherAI Security Assessment
PUBLIC

C. Automated Testing

This section describes the setup of the automated analysis tools used during this audit.

Clippy
The Rust linter Clippy can be installed using rustup by running the command rustup
component add clippy. Invoking cargo clippy in the root directory of the project runs
the tool.

Dylint
Dylint is a linter for Rust developed by Trail of Bits. It can be installed by running the
command cargo install cargo-dylint dylint-link. To run Dylint, we added a
Cargo.toml file to the root of the repository with the following content.

[workspace.metadata.dylint]
libraries = [
{ git = "https://github.com/trailofbits/dylint", pattern = "examples/general/*" },

]

Figure C.1: Metadata required to run Dylint

To run the tool, run cargo dylint --all --workspace.

Semgrep
Semgrep can be installed using pip by running python3 -m pip install semgrep. To run
Semgrep on a codebase, run semgrep --config “<CONFIGURATION>” in the root
directory of the project. Here, <CONFIGURATION> can be a single rule, a directory of rules,
or the name of a rule set hosted on the Semgrep registry.

We ran several custom Semgrep rules on the safetensors library. Because support for
Rust in Semgrep is still experimental, we focused on identifying the following small set of
issues:

● The use of panicking functions such as assert, unreachable, unwrap, and expect
in production code (i.e., outside unit tests)

rules:
- id: panic-in-function-returning-result
patterns:
- pattern-inside: |

fn $FUNC(...) -> Result<$T> {
...

}
- pattern-either:

Trail of Bits 42 EleutherAI Security Assessment
PUBLIC

- pattern: $EXPR.unwrap()
- pattern: $EXPR.expect(...)

message: |
`expect` or `unwrap` called in function returning a `Result`.

languages: [rust]
severity: WARNING

Figure C.2: panic-in-function-returning-result.yaml

rules:
- id: unwrap-outside-test
patterns:
- pattern: $RESULT.unwrap()
- pattern-not-inside: "

#[test]
fn $TEST() {

...
$RESULT.unwrap()
...

}
"

message: Calling `unwrap` outside unit test
languages: [rust]
severity: WARNING

Figure C.3: unwrap-outside-test.yaml

rules:
- id: expect-outside-test
patterns:
- pattern: $RESULT.expect(...)
- pattern-not-inside: "

#[test]
fn $TEST() {

...
$RESULT.expect(...)
...

}
"

message: Calling `expect` outside unit test
languages: [rust]
severity: WARNING

Figure C.4: expect-outside-test.yaml

● The use of the as keyword in casting, which can silently truncate integers (e.g.,
casting data.len() to a u32 can truncate the input length on 64-bit systems)

rules:
- id: length-to-smaller-integer
pattern-either:

Trail of Bits 43 EleutherAI Security Assessment
PUBLIC

- pattern: $VAR.len() as u32
- pattern: $VAR.len() as i32
- pattern: $VAR.len() as u16
- pattern: $VAR.len() as i16
- pattern: $VAR.len() as u8
- pattern: $VAR.len() as i8
message: |
Casting `usize` length to smaller integer size silently drops high bits
on 64-bit platforms

languages: [rust]
severity: WARNING

Figure C.5: length-to-smaller-integer.yaml

● Unexpected comparisons before subtraction (e.g., ensuring that x is less than y
before subtracting y from x), which may indicate errors in the code

rules:
- id: switched-underflow-guard
pattern-either:
- patterns:

- pattern-inside: |
if $Y > $X {

...
}

- pattern-not-inside: |
if $Y > $X {

} else {
...

}
- pattern: $X - $Y

- patterns:
- pattern-inside: |

if $Y >= $X {
...

}
- pattern-not-inside: |

if $Y >= $X {

} else {
...

}
- pattern: $X - $Y

- patterns:
- pattern-inside: |

if $Y < $X {
...

}
- pattern-not-inside: |

if $Y < $X {

Trail of Bits 44 EleutherAI Security Assessment
PUBLIC

} else {
...

}
- pattern: $Y - $X

- patterns:
- pattern-inside: |

if $Y <= $X {
...

}
- pattern-not-inside: |

if $Y <= $X {

} else {
...

}
- pattern: $X - $Y

- patterns:
- pattern-inside: |

if $Y > $X {

} else {
...

}
- pattern: $Y - $X

- patterns:
- pattern-inside: |

if $Y >= $X {

} else {
...

}
- pattern: $Y - $X

- patterns:
- pattern-inside: |

if $Y < $X {

} else {
...

}
- pattern: $X - $Y

- patterns:
- pattern-inside: |

if $Y <= $X {

} else {
...

}
- pattern: $X - $Y

- patterns:
- pattern: |

if $X < $Y {
}
...

Trail of Bits 45 EleutherAI Security Assessment
PUBLIC

message: Potentially switched comparison in if-statement condition
languages: [rust]
severity: WARNING

Figure C.6: switched-underflow-guard.yaml

cargo-audit
The cargo-audit Cargo plugin identifies known vulnerable dependencies in Rust projects.
It can be installed using cargo install cargo-audit. To run the tool, run cargo audit
in the crate root directory.

cargo-geiger
The cargo-geiger Cargo plugin provides statistics on the use of unsafe code in the
project and its dependencies. The plugin can be installed using cargo install
cargo-geiger. To run the tool, run cargo geiger in the crate root directory.

cargo-outdated
The cargo-outdated Cargo plugin identifies project dependencies with newer versions
available. The plugin is installed by running cargo install cargo-outdated. To run the
tool, run cargo outdated in the crate root directory.

cargo-llvm-cov
The cargo-llvm-cov Cargo plugin is used to generate LLVM source–based code coverage
data. The plugin can be installed via the command cargo install cargo-llvm-cov. To
run the plugin, simply run the command cargo llvm-cov in the crate root directory.

pip-audit
The pip-audit utility was developed by Trail of Bits and Google to detect known
vulnerabilities in dependencies in Python environments. Install it with pip3 install
pip-audit and run it in the root of the Python project with pip-audit. The output is a
table enumerating all packages with known vulnerabilities installed in the environment.

mypy
The mypy Python type checker can statically infer many type errors. It uses both static type
inference and optional Python type hints. Install it with pip3 install mypy and run it in
the root of the Python project with mypy. It will emit potential issues such as type confusion
and operation on an optional variable without first checking if it is None.

Trail of Bits 46 EleutherAI Security Assessment
PUBLIC

https://docs.python.org/3/library/typing.html

D. Property Testing with Proptest

During the review of the safetensors library, we wrote several property tests for the
library based on the proptest framework.

Property testing is used to test whether a property holds true for arbitrary inputs to a
function or component of the codebase. If a failure case is found, the framework
automatically finds a minimal test case that violates the property.

The proptest crate uses strategies to generate random inputs. There are simple strategies
such as any::<usize>(), which can be used to generate primitive data types. Strategies
can also be composed to generate more complex types.

During the engagement, we wrote strategies to generate arbitrary instances of the Dtype
and Metadata types defined by the safetensors library. We then used these instances to
validate that the serialization and deserialization processes are inverses of each other (i.e.,
that we got the same data back if we first serialized and then deserialized an existing
SafeTensors structure).

proptest! {
#![proptest_config(ProptestConfig::with_cases(100))]

#[test]
fn test_roundtrip(metadata in arbitrary_metadata()) {

let data: Vec<u8> = (0..data_size(&metadata))
.map(|x| x as u8).collect();

let before = Safetensors { metadata, data: &data };
let tensors = before.tensors();
let bytes = serialize(

tensors.iter().map(|(name, view)| (name.to_string(), view)),
&None

).unwrap();
let after = Safetensors::deserialize(&bytes).unwrap();

// Check that the tensors are the same after deserialization.
assert_eq!(before.names().len(), after.names().len());
for name in before.names() {

let tensor_before = before.tensor(name).unwrap();
let tensor_after = after.tensor(name).unwrap();
assert_eq!(tensor_before, tensor_after);

}
}

}

Figure D.1: This test case runs test_roundtrip 100 times with random inputs.

Trail of Bits 47 EleutherAI Security Assessment
PUBLIC

https://github.com/proptest-rs/proptest
https://altsysrq.github.io/proptest-book/proptest/tutorial/strategy-basics.html

This property test uses the arbitrary_metadata strategy to generate random Metadata
instances.

fn arbitrary_metadata() -> impl Strategy<Value = Metadata> {
// We generate at least one tensor.
(1..MAX_TENSORS)

.prop_flat_map(|size| {
// Returns a strategy generating `size` data types and shapes.
(

prop::collection::vec(arbitrary_dtype(), size),
prop::collection::vec(arbitrary_shape(), size),

)
})
.prop_map(|(dtypes, shapes)| {

// Returns a metadata object from a (length, dtypes, shapes) triple.
let mut start = 0;
let tensors: Vec<TensorInfo> = dtypes

.iter()

.zip(shapes.into_iter())

.map(|(dtype, shape)| {
// This cannot overflow because the size of
// the vector and elements are so small.
let length: usize = shape.iter().product();
let end = start + length * dtype.size();
let tensor = TensorInfo {

dtype: *dtype,
shape,
data_offsets: (start, end),

};
start = end;
tensor

})
.collect();

let index_map = (0..tensors.len())
.map(|index| (format!("t.{index}"), index))
.collect();

Metadata {
metadata: None,
tensors,
index_map,

}
})

}

Figure D.2: This proptest strategy generates arbitrary Metadata instances and relies on the
simpler strategies arbitrary_dtype and arbitrary_shape.

To ensure that the test passes, we made some assumptions about the file format that are
currently not in the specification. For example, we assumed that data offsets should never
index out of bounds and that tensor shapes should be non-empty and never contain zero.

Trail of Bits 48 EleutherAI Security Assessment
PUBLIC

To compare TensorView instances in test_roundtrip, we derived the PartialEq and
Eq traits for the TensorView type.

References
1. Proptest GitHub page

2. The Proptest Book

Trail of Bits 49 EleutherAI Security Assessment
PUBLIC

https://github.com/proptest-rs/proptest
https://altsysrq.github.io/proptest-book/

E. Property Testing with Hypothesis

During the review, we wrote several property tests using the Python Hypothesis library.
As with proptest, these tests can be used to specify whether a property holds true for
arbitrary inputs to a function or component and automatically finds a minimal failing test
case if such an example exists.

We used strategies to generate arbitrary inputs. In particular, we used strategies
specifically designed for libraries using the NumPy library and tested properties such as the
absence of crashes and the integrity of round-trip serialization and deserialization. We also
extended these property tests to incorporate fuzzing through python-afl.

The following test checks whether NumPy arrays saved in a safetensors file are the same
when they are deserialized. In other words, the property specified by this test is the
integrity of round-trip serialization and deserialization. This test substantiates TOB-SFTN-3.
To make the test effective, we made multiple assumptions that are not included in the
specification. These assumptions are explicitly outlined in the tests.

This Python Hypothesis test checks that the data is the same after serialization and
deserialization. The decorator specifies the strategies used to generate arbitrary data, and
multiple assumptions are made in the function body.

import safetensors.numpy
import numpy as np
from hypothesis import assume, given, strategies as st
import hypothesis.extra.numpy as hen

@given(
tensor_dict=st.dictionaries(

st.text(min_size=1),
hen.arrays(

dtype=hen.unsigned_integer_dtypes(endianness="<"),
shape=hen.array_shapes())),

metadata=st.dictionaries(st.text(), st.text()))
def test_roundtrip_serialize_deserialize(tensor_dict, metadata)-> None:

assume(bool(tensor_dict) == True)
assume(bool(metadata) == True)
assume(tensor_dict.keys() != (['']))
serialized_bytes = safetensors.numpy.serialize(tensor_dict=tensor_dict,

metadata=metadata)
deserialized_dict = safetensors.numpy.deserialize(bytes=serialized_bytes)
assert tensor_dict == deserialized_dict

Figure E.1: The Python Hypothesis test

References
1. Python Hypothesis

Trail of Bits 50 EleutherAI Security Assessment
PUBLIC

https://hypothesis.readthedocs.io/en/latest/
https://github.com/jwilk/python-afl
https://hypothesis.readthedocs.io/en/latest/

F. File Format Polyglots

The safetensors file format allows the creation of polyglots, which are files that can be
interpreted validly as multiple different file formats. This is particularly impactful for
downstream applications that rely on parsing such files, as polyglots can enable
steganography and cause invalid format detection, parsing bugs, and other issues. For
instance, an attacker can upload a file that is a valid machine learning (ML) model in the
safetensors file format and a backdoored model in the Keras native file format. An attacker
could also upload a file that is both a valid ML model in the safetensors file format and
malware as a ZIP archive.

The creation of polyglots with the safetensors file format is chiefly enabled by the ability to
append arbitrary data to the file without affecting the validity of the file. As a result, an
attacker can append any file in a format that accepts prepended data, such as ZIP or PDF.
This should be disallowed by the parser. ZIP is a particularly common container format for
other ML file formats, such as the Keras native format.

Using the header size as the starting element, followed by the variable-length metadata
component, expands the set of safetensors polyglots that can be constructed. An attacker
can set the header size in the safetensors file format to be the magic signature of another
file format, thus changing the size of the metadata component to match the magic
signature. As a result, polyglots can be created even if the other file format does not accept
prepended data. This capability is somewhat restricted by the maximum header size; when
interpreted as a header size, some magic signatures are greater than the maximum header
size specified by the library and are therefore rejected during parsing. This should be a
consideration if the maximum header size is ever changed.

We created valid polyglots from the safetensors file format with the Keras native, PDF, ZIP,
and TFRecords file formats.

References
1. Evan Sultanik, Two New Tools that Tame the Treachery of Files, Trail of Bits Blog.

November 1, 2019.

Trail of Bits 51 EleutherAI Security Assessment
PUBLIC

https://blog.trailofbits.com/2019/11/01/two-new-tools-that-tame-the-treachery-of-files/

G. Code Quality Recommendations

The following recommendations are not associated with specific vulnerabilities. However,
they enhance code readability and may prevent the introduction of vulnerabilities in the
future.

● The expression filter_map(..).next() could be replaced with find_map(..)
(line 454 in safetensors/src/tensor.rs).

454 | let tensor_name = self
| ___________________________________^

455 | | .index_map
456 | | .iter()
457 | | .filter_map(|(name, &index)| if index == i {

Some(&name[..])
} else {

None
}

)
458 | | .next()

| |___________________________^

● Metadata::new could return Metadata instead of Result<Metadata, ...> (line
425 in src/tensor.rs).

● The slices argument to SliceIterator::new is passed by value but is not
consumed in the function (line 214 src/slice.rs). Consider changing the type to
&[TensorIndexer] instead.

● The example from the README is missing the line import torch.

from safetensors import safe_open
from safetensors.torch import save_file

tensors = {
"weight1": torch.zeros((1024, 1024)),
"weight2": torch.zeros((1024, 1024))

}
save_file(tensors, "model.safetensors")

tensors = {}
with safe_open("model.safetensors", framework="pt", device="cpu") as f:

for key in f.keys():
tensors[key] = f.get_tensor(key)

● The following line (line 165 in safetensors/src/tensor.rs) could be removed
since data already has type Vec<(S, V)>.

Trail of Bits 52 EleutherAI Security Assessment
PUBLIC

let data: Vec<_> = data.into_iter().collect();

● The filename argument to serialize_file is passed by value but is not
consumed in the function (line 123 bindings/python/src/lib.rs). Consider
changing the type to &PathBuf instead.

● The type hint for the function _is_little_endian should be bool (on line 166 of
bindings/python/py_src/safetensors/numpy.py).

def _is_little_endian(tensor: np.ndarray) -> str:

Trail of Bits 53 EleutherAI Security Assessment
PUBLIC

H. Fix Review Results

When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
identified in the original report. This work involves a review of specific areas of the source
code and system configuration, not comprehensive analysis of the system.

On April 26, 2023, Trail of Bits reviewed the fixes and mitigations implemented by the
Hugging Face team for the issues identified in this report. We reviewed each fix to
determine its effectiveness in resolving the associated issue.

Hugging Face’s fixes span a number of commits and pull requests. We list the associated
location of each fix in the Detailed Fix Review Results section. There was only one finding
left unresolved, of informational severity (TOB-SFTN-3). Our suggestions were
implemented, but it was later discovered that a fix would break compatibility with the
models produced by other libraries, so the fix was reverted to maintain compatibility.

In summary, of the 10 issues identified in this report, Hugging Face has resolved 9. For
additional information, please see the Detailed Fix Review Results below.

ID Title Severity Status

1 Tensor offsets are not checked against the total
size of the tensor data

Medium Resolved

2 Tensor size calculations may overflow in
Metadata::validate

Medium Resolved

3 The safetensors library allows zero-sized tensors Informational Impracticable

4 The SliceIterator type does not validate tensor
indexers against the tensor shape

Low Resolved

5 Insufficient test coverage against adversarial
inputs

Medium Resolved

6 Serialization can panic on malformed JSON Informational Resolved

7 Underspecified JSON behavior can lead to parser
differentials

Low Resolved

Trail of Bits 54 EleutherAI Security Assessment
PUBLIC

8 PyTorch conversion utility is vulnerable to
arbitrary code execution

Undetermined Resolved

9 Python dependencies are not semantically
versioned

Low Resolved

10 The safetensors library does not check for
exceptional values

Informational Resolved

Trail of Bits 55 EleutherAI Security Assessment
PUBLIC

Detailed Fix Review Results
TOB-SFTN-1: Tensor offsets are not checked against the total size of the tensor data
Resolved in PR #206. Safetensors now fails to load a file if there is extraneous data at the
end.

TOB-SFTN-2: Tensor size calculations may overflow in Metadata::validate
Resolved in PR #207. Safetensors now checks whether metadata contains information that
will lead to an arithmetic overflow.

TOB-SFTN-3: The safetensors library allows zero-sized tensors
Resolved in PR #215 and PR #216, but subsequently reverted in PR #221 and PR #226.
Other libraries such as PyTorch emit models with zero-sized tensors, so safetensors
needs to maintain its previous behavior for compatibility.

TOB-SFTN-4: The SliceIterator type does not validate tensor indexers against the
tensor shape
Resolved in PR #216 and PR #218. The tensor shape is now validated.

TOB-SFTN-5: Insufficient test coverage against adversarial inputs
Resolved in PR #214, PR #216, PR #225, PR #228, and PR #235. Additional test coverage
and input validation was added.

TOB-SFTN-6: Serialization can panic on malformed JSON
Resolved in PR #209. The unchecked unwrap was removed.

TOB-SFTN-7: Underspecified JSON behavior can lead to parser differentials
Resolved in PR #215. The documentation was improved.

TOB-SFTN-8: PyTorch conversion utility is vulnerable to arbitrary code execution
Resolved in PR #219. A warning and confirmation message were added to the utility.

TOB-SFTN-9: Python dependencies are not semantically versioned
Resolved in PR #204, PR #227, and PR #233. All Python dependencies are now semantically
versioned, and the Cargo lockfile has been added to the repository.

TOB-SFTN-10: The safetensors library does not check for exceptional values
Resolved in PR #215. This behavior was documented.

Trail of Bits 56 EleutherAI Security Assessment
PUBLIC

https://github.com/huggingface/safetensors/pull/206
https://github.com/huggingface/safetensors/pull/207
https://github.com/huggingface/safetensors/pull/215
https://github.com/huggingface/safetensors/pull/216
https://github.com/huggingface/safetensors/pull/221
https://github.com/huggingface/safetensors/pull/226
https://github.com/huggingface/safetensors/pull/216
https://github.com/huggingface/safetensors/pull/218
https://github.com/huggingface/safetensors/pull/214
https://github.com/huggingface/safetensors/pull/216
https://github.com/huggingface/safetensors/pull/225
https://github.com/huggingface/safetensors/pull/228
https://github.com/huggingface/safetensors/pull/235
https://github.com/huggingface/safetensors/pull/209
https://github.com/huggingface/safetensors/pull/215
https://github.com/huggingface/safetensors/pull/219
https://github.com/huggingface/safetensors/pull/204
https://github.com/huggingface/safetensors/pull/227
https://github.com/huggingface/safetensors/pull/233
https://github.com/huggingface/safetensors/pull/215

