import json import pytest from sampling import generate_stratified_indexes import numpy as np import pandas as pd import os default_url = "https://raw.githubusercontent.com/franciellevargas/HateBR/2d18c5b9410c2dfdd6d5394caa54d608857dae7c/dataset/HateBR.csv" DATASET_URL = os.environ.get("DATASET_URL", default_url) @pytest.fixture(scope='module') def mock_data(): df = pd.read_csv(DATASET_URL) df.drop("instagram_comments", axis=1, inplace=True) df = df.head(100) return df @pytest.fixture(scope='module') def indexes(): with open('indexes.json', 'r') as f: generated_indexes = json.load(f) return generated_indexes def test_generate_stratified_indexes_returns_arrays_of_equal_length(mock_data): X_train_indexes, X_dev_indexes, X_test_indexes, y_train_indexes, y_dev_indexes, y_test_indexes = generate_stratified_indexes(mock_data) assert len(X_train_indexes) == len(y_train_indexes) assert len(X_dev_indexes) == len(y_dev_indexes) assert len(X_test_indexes) == len(y_test_indexes) def test_generate_stratified_indexes_returns_equal_arrays(mock_data): X_train_indexes, X_dev_indexes, X_test_indexes, y_train_indexes, y_dev_indexes, y_test_indexes = generate_stratified_indexes(mock_data) assert np.array_equal(X_train_indexes, y_train_indexes) assert np.array_equal(X_dev_indexes, y_dev_indexes) assert np.array_equal(X_test_indexes, y_test_indexes) def test_no_repeated_indexes(indexes): train_set = set(indexes['train']) val_set = set(indexes['validation']) test_set = set(indexes['test']) # Check that there are no repeated indexes between sets assert len(train_set.union(val_set).union(test_set)) == len(train_set) + len(val_set) + len(test_set) def test_all_indexes_present(indexes): total_indexes = indexes['train'] + indexes['validation'] + indexes['test'] max_index = max(total_indexes) # Check that all indexes in range of total combined length are present assert set(total_indexes) == set(range(max_index+1))