--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/datasetcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/datasets-cards {} --- # Dataset Card for Dataset Name ## Dataset Description - **Homepage:** - **Repository:** https://github.com/americanas-tech/b2w-reviews01 - **Paper:** http://comissoes.sbc.org.br/ce-pln/stil2019/proceedings-stil-2019-Final-Publicacao.pdf - **Leaderboard:** - **Point of Contact:** ### Dataset Summary B2W-Reviews01 is an open corpus of product reviews. It contains more than 130k e-commerce customer reviews, collected from the Americanas.com website between January and May, 2018. B2W-Reviews01 offers rich information about the reviewer profile, such as gender, age, and geographical location. The corpus also has two different review rates: * the usual 5-point scale rate, represented by stars in most e-commerce websites, * a "recommend to a friend" label, a "yes or no" question representing the willingness of the customer to recommend the product to someone else. This dataset can be useful for several Natural Language Processing (NLP)/ Computational Linguistics (CL) tasks. The first that comes to mind is probably sentiment analysis. Sentiment analysis is the task of assigning a sentiment (or a position) to the content of a given text. For this task, B2W-Reviews01 offers the two distinct evaluation ratings. ### Supported Tasks and Leaderboards * Sentiment Analysis * Topic Modeling ### Languages * Portuguese ## Dataset Structure ### Data Instances ``` {'submission_date': '2018-01-02 06:23:22', 'reviewer_id': '6adc7901926fc1697d34181fbd88895976b4f3f31f0102d90217d248a1fad156', 'product_id': '123911277', 'product_name': 'Triciclo Gangorra Belfix Cabeça Cachorro Rosa', 'product_brand': 'belfix', 'site_category_lv1': 'Brinquedos', 'site_category_lv2': 'Mini Veículos', 'review_title': 'O produto não foi entregue', 'overall_rating': 1, 'recommend_to_a_friend': 'Yes', 'review_text': 'Incrível o descaso com o consumidor. O produto não chegou, apesar de já ter sido pago. Não recebo qualquer informação sobre onde se encontra o produto, ou qualquer compensação do vendedor. Não recomendo.', 'reviewer_birth_year': 1981, 'reviewer_gender': 'M', 'reviewer_state': 'RJ'} ``` ### Data Fields * **submission_date**: the date and time when the review was submitted. * **reviewer_id**: a unique identifier for the reviewer. * **product_id**: a unique identifier for the product being reviewed. * **product_name**: the name of the product being reviewed. * **product_brand**: the brand of the product being reviewed. * **site_category_lv1**: the highest level category for the product on the site where the review is being submitted. * **site_category_lv2**: the second level category for the product on the site where the review is being submitted. * **review_title**: the title of the review. * **overall_rating**: the overall star rating given by the reviewer on a scale of 1 to 5. * **recommend_to_a_friend**: whether or not the reviewer would recommend the product to a friend (Yes/No). * **review_text**: the full text of the review. * **reviewer_birth_year**: the birth year of the reviewer. * **reviewer_gender**: the gender of the reviewer (F/M). * **reviewer_state**: the Brazilian state of the reviewer (e.g. RJ). ### Data Splits ### Citation Information ``` @inproceedings{real2019b2w, title={B2W-reviews01: an open product reviews corpus}, author={Real, Livy and Oshiro, Marcio and Mafra, Alexandre}, booktitle={STIL-Symposium in Information and Human Language Technology}, year={2019} } ``` ### Contributions Thanks to [@ruanchaves](https://github.com/ruanchaves) for adding this dataset.