rshrott commited on
Commit
ad204cb
1 Parent(s): 1b82e39

Update renovation.py

Browse files
Files changed (1) hide show
  1. renovation.py +21 -25
renovation.py CHANGED
@@ -1,11 +1,12 @@
1
  import os
2
  import glob
3
  import random
4
- import zipfile
5
 
6
  import datasets
7
  from datasets.tasks import ImageClassification
8
-
 
 
9
  _HOMEPAGE = "https://github.com/your-github/renovation"
10
 
11
  _CITATION = """\
@@ -25,17 +26,16 @@ Data was collected by the your research lab.
25
  """
26
 
27
  _URLS = {
28
- "Not Applicable": "https://huggingface.co/datasets/rshrott/photos/resolve/main/Not Applicable.zip",
29
  "Very Poor": "https://huggingface.co/datasets/rshrott/photos/resolve/main/Very Poor.zip",
30
- "Poor": "https://huggingface.co/datasets/rshrott/photos/resolve/main/Poor.zip",
31
- "Fair": "https://huggingface.co/datasets/rshrott/photos/resolve/main/Fair.zip",
32
- "Good": "https://huggingface.co/datasets/rshrott/photos/resolve/main/Good.zip",
33
- "Excellent": "https://huggingface.co/datasets/rshrott/photos/resolve/main/Excellent.zip",
34
- "Exceptional": "https://huggingface.co/datasets/rshrott/photos/resolve/main/Exceptional.zip"
35
  }
36
 
37
  _NAMES = ["Not Applicable", "Very Poor", "Poor", "Fair", "Good", "Excellent", "Exceptional"]
38
-
39
  class Renovations(datasets.GeneratorBasedBuilder):
40
  """Renovations house images dataset."""
41
 
@@ -56,52 +56,49 @@ class Renovations(datasets.GeneratorBasedBuilder):
56
  )
57
 
58
  def _split_generators(self, dl_manager):
59
- data_dir = dl_manager.download_and_extract(_URLS)
60
  return [
61
  datasets.SplitGenerator(
62
  name=datasets.Split.TRAIN,
63
  gen_kwargs={
64
- "data_dir": data_dir,
65
  "split": "train",
66
  },
67
  ),
68
  datasets.SplitGenerator(
69
  name=datasets.Split.VALIDATION,
70
  gen_kwargs={
71
- "data_dir": data_dir,
72
  "split": "val",
73
  },
74
  ),
75
  datasets.SplitGenerator(
76
  name=datasets.Split.TEST,
77
  gen_kwargs={
78
- "data_dir": data_dir,
79
  "split": "test",
80
  },
81
  ),
82
  ]
83
 
84
-
85
- def _generate_examples(self, data_dir, split):
86
  all_files_and_labels = []
87
- for label in _NAMES:
88
- folder_path = os.path.join(data_dir, label)
89
- files = glob.glob(os.path.join(folder_path, "*.jpeg"))
90
- for file in files:
91
- all_files_and_labels.append((file, label))
92
-
93
  random.seed(43) # ensure reproducibility
94
  random.shuffle(all_files_and_labels)
95
-
96
  num_files = len(all_files_and_labels)
97
  train_data = all_files_and_labels[:int(num_files*0.9)]
98
  val_test_data = all_files_and_labels[int(num_files*0.9):] # This will be used for both val and test
99
-
100
  if split == "train":
101
  data_to_use = train_data
102
  else: # "val" or "test" split
103
  data_to_use = val_test_data
104
-
105
  for idx, (file, label) in enumerate(data_to_use):
106
  yield idx, {
107
  "image_file_path": file,
@@ -110,4 +107,3 @@ class Renovations(datasets.GeneratorBasedBuilder):
110
  }
111
 
112
 
113
-
 
1
  import os
2
  import glob
3
  import random
 
4
 
5
  import datasets
6
  from datasets.tasks import ImageClassification
7
+ from datasets import load_dataset
8
+ import os
9
+ from huggingface_hub import login
10
  _HOMEPAGE = "https://github.com/your-github/renovation"
11
 
12
  _CITATION = """\
 
26
  """
27
 
28
  _URLS = {
29
+ "Not Applicable": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/Not Applicable.zip",
30
  "Very Poor": "https://huggingface.co/datasets/rshrott/photos/resolve/main/Very Poor.zip",
31
+ "Poor": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/Poor.zip",
32
+ "Fair": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/Fair.zip",
33
+ "Good": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/Good.zip",
34
+ "Excellent": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/Excellent.zip",
35
+ "Exceptional": "https://huggingface.co/datasets/rshrott/renovation/resolve/main/Exceptional.zip"
36
  }
37
 
38
  _NAMES = ["Not Applicable", "Very Poor", "Poor", "Fair", "Good", "Excellent", "Exceptional"]
 
39
  class Renovations(datasets.GeneratorBasedBuilder):
40
  """Renovations house images dataset."""
41
 
 
56
  )
57
 
58
  def _split_generators(self, dl_manager):
59
+ data_files = dl_manager.download_and_extract(_URLS)
60
  return [
61
  datasets.SplitGenerator(
62
  name=datasets.Split.TRAIN,
63
  gen_kwargs={
64
+ "data_files": data_files,
65
  "split": "train",
66
  },
67
  ),
68
  datasets.SplitGenerator(
69
  name=datasets.Split.VALIDATION,
70
  gen_kwargs={
71
+ "data_files": data_files,
72
  "split": "val",
73
  },
74
  ),
75
  datasets.SplitGenerator(
76
  name=datasets.Split.TEST,
77
  gen_kwargs={
78
+ "data_files": data_files,
79
  "split": "test",
80
  },
81
  ),
82
  ]
83
 
84
+ def _generate_examples(self, data_files, split):
 
85
  all_files_and_labels = []
86
+ for label, path in data_files.items():
87
+ files = glob.glob(path + '/*.jpeg', recursive=True)
88
+ all_files_and_labels.extend((file, label) for file in files)
89
+
 
 
90
  random.seed(43) # ensure reproducibility
91
  random.shuffle(all_files_and_labels)
92
+
93
  num_files = len(all_files_and_labels)
94
  train_data = all_files_and_labels[:int(num_files*0.9)]
95
  val_test_data = all_files_and_labels[int(num_files*0.9):] # This will be used for both val and test
96
+
97
  if split == "train":
98
  data_to_use = train_data
99
  else: # "val" or "test" split
100
  data_to_use = val_test_data
101
+
102
  for idx, (file, label) in enumerate(data_to_use):
103
  yield idx, {
104
  "image_file_path": file,
 
107
  }
108
 
109