import json from itertools import combinations import datasets logger = datasets.logging.get_logger(__name__) _DESCRIPTION = """TBA""" _NAME = "relational_similarity" _VERSION = "0.0.2" _CITATION = """TBA""" _HOME_PAGE = "https://github.com/asahi417/relbert" _URL = f'https://huggingface.co/datasets/relbert/{_NAME}/raw/main/data' _DATA_ALL = [ 'semeval2012_relational_similarity', 'nell_relational_similarity', 't_rex_relational_similarity', 'conceptnet_relational_similarity', ] _ALL_TYPES = [] for n in range(2, len(_DATA_ALL) + 1): _ALL_TYPES += list(combinations(_DATA_ALL, n)) _ALL_TYPES = [sorted(i) for i in _ALL_TYPES] _ALL_TYPES_DICT = {'.'.join(i): i for i in _ALL_TYPES} _URLS = { k: { str(datasets.Split.TRAIN): [f'{_URL}/{_v}.train.jsonl' for _v in v], str(datasets.Split.VALIDATION): [f'{_URL}/{_v}.validation.jsonl' for _v in v] } for k, v in _ALL_TYPES_DICT.items()} class RelationalSimilarityConfig(datasets.BuilderConfig): """BuilderConfig""" def __init__(self, **kwargs): """BuilderConfig. Args: **kwargs: keyword arguments forwarded to super. """ super(RelationalSimilarityConfig, self).__init__(**kwargs) class NELLNetRelationalSimilarity(datasets.GeneratorBasedBuilder): """Dataset.""" BUILDER_CONFIGS = [ RelationalSimilarityConfig(name=i, version=datasets.Version(_VERSION), description=_DESCRIPTION) for i in sorted(_ALL_TYPES_DICT.keys()) ] def _split_generators(self, dl_manager): downloaded_file = dl_manager.download_and_extract(_URLS[self.config.name]) return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]}) for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION]] def _generate_examples(self, filepaths): _key = 0 for filepath in filepaths: logger.info(f"generating examples from = {filepath}") with open(filepath, encoding="utf-8") as f: _list = [i for i in f.read().split('\n') if len(i) > 0] for i in _list: data = json.loads(i) yield _key, data _key += 1 def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "relation_type": datasets.Value("string"), "positives": datasets.Sequence(datasets.Sequence(datasets.Value("string"))), "negatives": datasets.Sequence(datasets.Sequence(datasets.Value("string"))), } ), supervised_keys=None, homepage=_HOME_PAGE, citation=_CITATION, )