""" - Wiki-One https://sites.cs.ucsb.edu/~xwhan/datasets/wiki.tar.gz - NELL-One https://sites.cs.ucsb.edu/~xwhan/datasets/nell.tar.gz wget https://sites.cs.ucsb.edu/~xwhan/datasets/nell.tar.gz tar -xzf nell.tar.gz wget https://sites.cs.ucsb.edu/~xwhan/datasets/wiki.tar.gz tar -xzf wiki.tar.gz """ import os import json import re from itertools import chain data_dir_nell = "NELL" os.makedirs("data", exist_ok=True) short = ['alcs', "uk", "us", "usa", "npr", "nbc", "bbc", "cnn", "abc", "cbs", "nfl", "mlb", "nba", "nhl", "pga", "ncaa", "wjhu", "pbs", "un"] non_entity_types = [ 'academicfield', 'agent', 'agriculturalproduct', 'amphibian', 'animal', 'aquarium', 'arachnid', 'architect', 'arthropod', 'bakedgood', 'bathroomitem', 'bedroomitem', 'beverage', 'bird', 'blog', 'bodypart', 'bone', 'candy', 'cave', 'chemical', 'clothing', 'coffeedrink', 'condiment', 'crimeorcharge', 'crustacean', 'date', 'dateliteral', 'economicsector', 'fish', 'food', 'fruit', 'fungus', 'furniture', 'grain', 'hallwayitem', 'hobby', 'insect', 'invertebrate', 'jobposition', 'kitchenitem', 'landscapefeatures', 'legume', 'location', 'mammal', 'meat', 'mlsoftware', 'mollusk', 'month', 'nut', 'officebuildingroom', 'physiologicalcondition', 'plant', 'politicsissue', 'profession', 'professionalorganization', 'reptile', 'room', 'sport', 'tableitem', 'tradeunion', 'vegetable', 'vehicle', 'vertebrate', 'weapon', 'wine' ] def clean(token): _, _type, token = token.split(":") token = token.replace("_", " ") token = token.replace("__", "") token = re.sub(r"00\d\Z", "", token) token = re.sub(r"\An(\d+)", r"\1", token) if _type in non_entity_types: return token, _type new_token = [] for _t in token.split(" "): if len(_t) == 0: continue if _t in short: _t = _t.upper() else: _t = _t.capitalize() new_token.append(_t) return " ".join(new_token), _type if not os.path.exists(data_dir_nell): raise ValueError("Please download the dataset first\n" "wget https://sites.cs.ucsb.edu/~xwhan/datasets/nell.tar.gz\n" "tar -xzf nell.tar.gz") def read_file(_file): with open(_file, 'r') as f_reader: tmp = json.load(f_reader) flatten = list(chain(*[[{"relation": r, "head": h, "tail": t} for (h, r, t) in v] for v in tmp.values()])) return flatten def read_vocab(_file): with open(_file) as f_reader: ent2ids = json.load(f_reader) return sorted(list(ent2ids.keys())) if __name__ == '__main__': # Process raw data vocab = read_vocab(f"{data_dir_nell}/ent2ids") vocab = [clean(i) for i in vocab if len(i.split(":")) > 2] vocab = ["\t".join(i) for i in vocab if len(i[0]) > 0 and len(i[1]) > 0] with open("data/nell.vocab.txt", 'w') as f: f.write("\n".join(vocab)) vocab_term = [i.split('\t')[0] for i in vocab] for i, s in zip(['dev_tasks.json', 'test_tasks.json', 'train_tasks.json'], ['validation', 'test', 'train']): d = read_file(f"{data_dir_nell}/{i}") for _d in d: head = _d.pop("head") tail = _d.pop("tail") head_entity, head_type = clean(head) _d['head'] = head_entity _d['head_type'] = head_type assert head_entity in vocab_term, head_entity tail_entity, tail_type = clean(tail) _d['tail'] = tail_entity _d['tail_type'] = tail_type assert tail_entity in vocab_term, tail_entity with open(f"data/nell.{s}.jsonl", "w") as f: f.write("\n".join([json.dumps(_d) for _d in d])) # Filter entity relation full_data = {} for s in ["train", "validation", "test"]: with open(f"data/nell.{s}.jsonl") as f: data = [json.loads(i) for i in f.read().split('\n') if len(i) > 0] data = [i for i in data if i['head_type'] not in non_entity_types and i['tail_type'] not in non_entity_types] with open(f"data/nell_filter.{s}.jsonl", "w") as f: f.write('\n'.join([json.dumps(i) for i in data])) with open("data/nell.vocab.txt") as f: vocab = [i.split("\t") for i in f.read().split('\n')] vocab = ["\t".join([a, b]) for a, b in vocab if b not in non_entity_types] with open("data/nell_filter.vocab.txt", 'w') as f: f.write('\n'.join(vocab))