import json import os import gzip import requests import pandas as pd urls = { 'dev1': 'https://home.ttic.edu/~kgimpel/comsense_resources/dev1.txt.gz', 'dev2': 'https://home.ttic.edu/~kgimpel/comsense_resources/dev2.txt.gz', 'test': 'https://home.ttic.edu/~kgimpel/comsense_resources/test.txt.gz', 'train': "https://home.ttic.edu/~kgimpel/comsense_resources/train600k.txt.gz" } os.makedirs("dataset", exist_ok=True) def wget(url, cache_dir: str = './cache'): """ wget and uncompress data_iterator """ os.makedirs(cache_dir, exist_ok=True) filename = os.path.basename(url) path = f'{cache_dir}/{filename}' if os.path.exists(path): return path.replace('.gz', '') with open(path, "wb") as f_: r = requests.get(url) f_.write(r.content) with gzip.open(path, 'rb') as f_: with open(path.replace('.gz', ''), 'wb') as f_write: f_write.write(f_.read()) os.remove(path) return path.replace('.gz', '') def read_file(file_name): with open(file_name) as f_reader: df = pd.DataFrame([i.split('\t') for i in f_reader.read().split('\n') if len(i) > 0], columns=['relation', 'head', 'tail', 'flag']) df = df[[not i.startswith("Not") for i in df.relation]] df_positive = df[df['flag'] != '0'] df_negative = df[df['flag'] == '0'] df_positive.pop('flag') df_negative.pop('flag') return df_positive, df_negative if __name__ == '__main__': test_p, test_n = read_file(wget(urls['test'])) dev1_p, dev1_n = read_file(wget(urls['dev1'])) dev2_p, dev2_n = read_file(wget(urls['dev2'])) train_p, _ = read_file(wget(urls['train'])) with open(f'dataset/test.jsonl', 'w') as f: for relation, df_p in test_p.groupby('relation'): if len(df_p) < 2: continue if relation in exclude: continue df_n = test_n[test_n['relation'] == relation] f.write(json.dumps({ 'relation_type': relation, 'positives': df_p[['head', 'tail']].to_numpy().tolist(), 'negatives': df_n[['head', 'tail']].to_numpy().tolist() }) + '\n') with open(f'dataset/train.jsonl', 'w') as f: for relation, df_p in train_p.groupby('relation'): if len(df_p) < 2: continue if relation in exclude: continue print(relation) f.write(json.dumps({ 'relation_type': relation, 'positives': df_p[['head', 'tail']].to_numpy().tolist(), 'negatives': [] }) + '\n') with open(f'dataset/valid.jsonl', 'w') as f: for relation, df_p in dev1_p.groupby('relation'): if len(df_p) < 2: continue if relation in exclude: continue df_n = dev1_n[dev1_n['relation'] == relation] f.write(json.dumps({ 'relation_type': relation, 'positives': df_p[['head', 'tail']].to_numpy().tolist(), 'negatives': df_n[['head', 'tail']].to_numpy().tolist() }) + '\n') for relation, df_p in dev2_p.groupby('relation'): if len(df_p) < 2: continue if relation in exclude: continue df_n = dev2_n[dev2_n['relation'] == relation] f.write(json.dumps({ 'relation_type': relation, 'positives': df_p[['head', 'tail']].to_numpy().tolist(), 'negatives': df_n[['head', 'tail']].to_numpy().tolist() }) + '\n')