import json import os from itertools import combinations from random import shuffle, seed import pandas as pd from datasets import load_dataset def get_stats(filename): with open(filename) as f: _data = [json.loads(i) for i in f.read().splitlines()] return len(_data), list(set([len(i['choice']) for i in _data])), len(list(set([i['prefix'] for i in _data]))) def lexical_overlap(word_a, word_b): for a in word_a.split(" "): for b in word_b.split(" "): if a.lower() == b.lower(): return True return False def create_analogy(_data, output_path, negative_per_relation, instance_per_relation=100): # if os.path.exists(output_path): # return df = _data.to_pandas() analogy_data = [] for _, i in df.iterrows(): target = [(q.tolist(), c.tolist()) for q, c in combinations(i['positives'], 2) if not any(lexical_overlap(c[0], y) or lexical_overlap(c[1], y) for y in q)] if len(target) == 0: continue if len(target) > instance_per_relation: seed(42) shuffle(target) target = target[:instance_per_relation] for m, (q, c) in enumerate(target): negative = [] for r in df['relation_type']: if r == i['relation_type']: continue target_per_relation = [y.tolist() for y in df[df['relation_type'] == r]['positives'].values[0]] shuffle(target_per_relation) negative += target_per_relation[:negative_per_relation] analogy_data.append({ "stem": q, "choice": [c, c[::-1]] + negative, "answer": 0, "prefix": i["relation_type"] }) os.makedirs(os.path.dirname(output_path), exist_ok=True) with open(output_path, "w") as f: f.write("\n".join([json.dumps(i) for i in analogy_data])) stat = [] ################################################################### # create analogy from `relbert/semeval2012_relational_similarity` # ################################################################### if not os.path.exists("dataset/semeval2012_relational_similarity/valid.jsonl"): data = load_dataset("relbert/semeval2012_relational_similarity", split="validation") analogy_data = [{ "stem": i['positives'][0], "choice": i["negatives"] + [i['positives'][1]], "answer": 2, "prefix": i["relation_type"] } for i in data] os.makedirs("dataset/semeval2012_relational_similarity", exist_ok=True) with open("dataset/semeval2012_relational_similarity/valid.jsonl", "w") as f: f.write("\n".join([json.dumps(i) for i in analogy_data])) v_size, v_num_choice, v_relation_type = get_stats("dataset/semeval2012_relational_similarity/valid.jsonl") stat.append({ "name": "`semeval2012_relational_similarity`", "Size (valid/test)": f"{v_size}/-", "Num of choice (valid/test)": f"{','.join([str(n) for n in v_num_choice])}/-", "Num of relation group (valid/test)": f"{v_relation_type}/-", "Original Reference": "[relbert/semeval2012_relational_similarity](https://huggingface.co/datasets/relbert/semeval2012_relational_similarity)" }) ############################################################# # create analogy from `relbert/t_rex_relational_similarity` # ############################################################# data = load_dataset("relbert/t_rex_relational_similarity", "filter_unified.min_entity_1_max_predicate_100", split="test") create_analogy(data, "dataset/t_rex_relational_similarity/test.jsonl", negative_per_relation=2) data = load_dataset("relbert/t_rex_relational_similarity", "filter_unified.min_entity_4_max_predicate_100", split="validation") create_analogy(data, "dataset/t_rex_relational_similarity/valid.jsonl", negative_per_relation=1) t_size, t_num_choice, t_relation_type = get_stats("dataset/t_rex_relational_similarity/test.jsonl") v_size, v_num_choice, v_relation_type = get_stats("dataset/t_rex_relational_similarity/valid.jsonl") stat.append({ "name": "`t_rex_relational_similarity`", "Size (valid/test)": f"{v_size}/{t_size}", "Num of choice (valid/test)": f"{','.join([str(n) for n in v_num_choice])}/{','.join([str(n) for n in t_num_choice])}", "Num of relation group (valid/test)": f"{v_relation_type}/{t_relation_type}", "Original Reference": "[relbert/t_rex_relational_similarity](https://huggingface.co/datasets/relbert/t_rex_relational_similarity)" }) ################################################################## # create analogy from `relbert/conceptnet_relational_similarity` # ################################################################## data = load_dataset("relbert/conceptnet_relational_similarity", split="test") create_analogy(data, "dataset/conceptnet_relational_similarity/test.jsonl", negative_per_relation=1) data = load_dataset("relbert/conceptnet_relational_similarity", split="validation") create_analogy(data, "dataset/conceptnet_relational_similarity/valid.jsonl", negative_per_relation=1) t_size, t_num_choice, t_relation_type = get_stats("dataset/conceptnet_relational_similarity/test.jsonl") v_size, v_num_choice, v_relation_type = get_stats("dataset/conceptnet_relational_similarity/valid.jsonl") stat.append({ "name": "`conceptnet_relational_similarity`", "Size (valid/test)": f"{v_size}/{t_size}", "Num of choice (valid/test)": f"{','.join([str(n) for n in v_num_choice])}/{','.join([str(n) for n in t_num_choice])}", "Num of relation group (valid/test)": f"{v_relation_type}/{t_relation_type}", "Original Reference": "[relbert/conceptnet_relational_similarity](https://huggingface.co/datasets/relbert/conceptnet_relational_similarity)" }) ################################################################## # create analogy from `relbert/conceptnet_relational_similarity` # ################################################################## data = load_dataset("relbert/nell_relational_similarity", split="test") create_analogy(data, "dataset/nell_relational_similarity/test.jsonl", negative_per_relation=1) data = load_dataset("relbert/nell_relational_similarity", split="validation") create_analogy(data, "dataset/nell_relational_similarity/valid.jsonl", negative_per_relation=1) t_size, t_num_choice, t_relation_type = get_stats("dataset/nell_relational_similarity/test.jsonl") v_size, v_num_choice, v_relation_type = get_stats("dataset/nell_relational_similarity/valid.jsonl") stat.append({ "name": "`nell_relational_similarity`", "Size (valid/test)": f"{v_size}/{t_size}", "Num of choice (valid/test)": f"{','.join([str(n) for n in v_num_choice])}/{','.join([str(n) for n in t_num_choice])}", "Num of relation group (valid/test)": f"{v_relation_type}/{t_relation_type}", "Original Reference": "[relbert/nell_relational_similarity](https://huggingface.co/datasets/relbert/nell_relational_similarity)" }) print(pd.DataFrame(stat).to_markdown(index=False))