# Avazu_x1 This dataset contains about 10 days of labeled click-through data on mobile advertisements. It has 22 feature fields including user features and advertisement attributes. We provide the reusable, processed dataset released by [the BARS benchmark](https://openbenchmark.github.io), which are randomly split into 7:1:2 as the training set, validation set, and test set, respectively. ### Dataset Details + **Repository:** https://github.com/reczoo/BARS/tree/main/datasets/Avazu#avazu_x1 + **Used by papers:** - Kelong Mao, Jieming Zhu, Liangcai Su, Guohao Cai, Yuru Li, Zhenhua Dong. [FinalMLP: An Enhanced Two-Stream MLP Model for CTR Prediction](https://arxiv.org/abs/2304.00902). In AAAI 2023. - Jieming Zhu, Qinglin Jia, Guohao Cai, Quanyu Dai, Jingjie Li, Zhenhua Dong, Ruiming Tang, Rui Zhang. [FINAL: Factorized Interaction Layer for CTR Prediction](https://dl.acm.org/doi/10.1145/3539618.3591988). In SIGIR 2023. - Weiyu Cheng, Yanyan Shen, Linpeng Huang. [Adaptive Factorization Network: Learning Adaptive-Order Feature Interactions](https://ojs.aaai.org/index.php/AAAI/article/view/5768). In AAAI 2020. + **Check the md5sum for data integrity:** ```bash $ md5sum train.csv valid.csv test.csv f1114a07aea9e996842c71648e0f6395 train.csv d9568f246357d156c4b8030fadb8b623 valid.csv 9e2fe9c48705c9315ae7a0953eb57acf test.csv ```