import json import re from typing import List import html import datasets ENTITY = 'entity' ENTITY_PATTERN = r'{}' logger = datasets.logging.get_logger(__name__) class RedialConfig(datasets.BuilderConfig): """BuilderConfig for ReDIAL.""" def __init__(self, features, initiator_prefix='User: ', respondent_prefix='System: ', **kwargs): """BuilderConfig for ReDIAL. Args: features: *list[string]*, list of the features that will appear in the feature dict. Should not include "label". **kwargs: keyword arguments forwarded to super. """ super().__init__(version=datasets.Version("0.0.1"), **kwargs) self.features = features self.initiator_prefix = initiator_prefix self.respondent_prefix = respondent_prefix _URL = "./" _URLS = { "train": _URL + "train.jsonl", "valid": _URL + "valid.jsonl", "test": _URL + "test.jsonl", } class ReDIAL(datasets.GeneratorBasedBuilder): DEFAULT_CONFIG_NAME = "rec" BUILDER_CONFIGS = [ RedialConfig( name="SA", description="For using the ReDIAL dataset to train sentiment analysis on movies in sentences", features={ "movieId": datasets.Value("int32"), "movieName": datasets.Value("string"), "messages": datasets.features.Sequence(datasets.Value("string")), "senders": datasets.features.Sequence(datasets.Value("int32")), "form": datasets.features.Sequence( datasets.Value("int32"), length=6 ) }, # certain information(e.g. movie_occurrences) is model-specific, and we leave it for Dataset.map ), # RedialConfig( # name="SA_debug", # description="For using the ReDIAL dataset to train sentiment analysis on movies in sentences", # features={ # "id": datasets.Value("int32"), # "movieName": datasets.Value("string"), # "messages": datasets.features.Sequence(datasets.Value("string")), # "senders": datasets.features.Sequence(datasets.Value("int32")), # "form": datasets.features.Sequence( # datasets.Value("int32"), length=6 # ) # }, # ), RedialConfig( name="autorec", description="For training autorec model on ReDIAL data", features=datasets.Features({ "movieIds": datasets.Sequence(datasets.Value("int32")), "ratings": datasets.Sequence(datasets.Value("float")) }), ), RedialConfig( name="rec", description="For using the ReDIAL dataset to train recommender", features={ "movieIds": datasets.Sequence(datasets.Value("int32")), "messages": datasets.features.Sequence(datasets.Value("string")), "senders": datasets.features.Sequence(datasets.Value("int32")), }, ), RedialConfig( name="formatted", description='Embed all information into a text sequence for each dialog', features={ "messages": datasets.features.Sequence(datasets.Value("string")), } ) ] def __init__(self, **kwargs): super().__init__(**kwargs) self.last_sender = None def _processMessage(self, msg, initialId): """ msg example: { "timeOffset": 0, "text": "Hi I am looking for a movie like @111776", "senderWorkerId": 956, "messageId": 204171 }, """ res = { "text": msg["text"], "sender": 1 if msg["senderWorkerId"] == initialId else -1 } return res def _flattenMessages(self, conversation, add_prefix=False): messages = [] senders = [] for message in conversation["messages"]: role = 1 if message["senderWorkerId"] == conversation["initiatorWorkerId"] else -1 text = message["text"] if len(senders) > 0 and senders[-1] == role: messages[-1] += "\n" + text else: senders.append(role) if add_prefix: prefix = self.config.initiator_prefix if role == 1 else self.config.respondent_prefix text = prefix + text messages.append(text) return messages, senders def _info(self): return datasets.DatasetInfo( description=self.config.description, features=datasets.Features(self.config.features), ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: urls_to_download = _URLS downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["valid"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), ] movie_pattern = re.compile(r'@(\d+)') default_movie_entity = '' def _process_utt(self, utt, movieid2name, replace_movieId=True, remove_movie=False): def convert(match): movieid = match.group(0)[1:] if movieid in movieid2name: if remove_movie: return '' movie_name = movieid2name[movieid] movie_name = ' '.join(movie_name.split()) return ENTITY_PATTERN.format(movie_name) else: return match.group(0) if replace_movieId: utt = re.sub(self.movie_pattern, convert, utt) utt = ' '.join(utt.split()) utt = html.unescape(utt) return utt def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" logger.info("generating examples from = %s", filepath) if self.config.name == "autorec": with open(filepath, encoding="utf-8") as f: idx = 0 for line in f: conversation = json.loads(line) movieIds = [] ratings = [] if len(conversation["initiatorQuestions"]) == 0: continue for id, form in conversation["initiatorQuestions"].items(): rating = int(form["liked"]) if rating < 2: movieIds.append(id) ratings.append(rating) if len(movieIds) > 0: yield idx, { "movieIds": movieIds, "ratings": ratings } idx += 1 elif "SA" in self.config.name: Idx = 0 date_pattern = re.compile(r'\(\d{4}\)') # To match e.g. "(2009)" with open(filepath, encoding="utf-8") as f: for line in f: conversation = json.loads(line) init_q = conversation["initiatorQuestions"] resp_q = conversation["respondentQuestions"] msgs, senders = self._flattenMessages(conversation) # get movies that are in both forms. gen = [key for key in init_q if key in resp_q] for id in gen: # remove date from movie name movieName = date_pattern.sub('', conversation["movieMentions"][id]).strip(" ") if len(movieName) == 0: continue yield Idx, { "movieId": int(id), "movieName": movieName, "messages": msgs, "senders": senders, "form": [init_q[id]["suggested"], init_q[id]["seen"], init_q[id]["liked"], resp_q[id]["suggested"], resp_q[id]["seen"], resp_q[id]["liked"], ] } Idx += 1 if Idx > 100 and "debug" in self.config.name: break elif "rec" in self.config.name: Idx = 0 with open(filepath, encoding="utf-8") as f: for line in f: conversation = json.loads(line) msgs, senders = self._flattenMessages(conversation) yield Idx, { "messages": msgs, "senders": senders, "movieIds": [int(movieId) for movieId in conversation["movieMentions"]] } Idx += 1 elif "formatted" in self.config.name: Idx = 0 with open(filepath, encoding="utf-8") as f: for line in f: dialog = json.loads(line) msgs, senders = self._flattenMessages(dialog, add_prefix=True) movieid2name = dialog['movieMentions'] formatted_msgs = [self._process_utt(utt, movieid2name) for utt in msgs] yield Idx, { "messages": formatted_msgs, } Idx += 1