inspired_unicrs / inspired_unicrs.py
Kevin99z's picture
Initial Commit
fd43728
raw
history blame
4.5 kB
import json
import re
from typing import List, Dict
import datasets
logger = datasets.logging.get_logger(__name__)
_URL = "./"
_URLS = {
"train": _URL + "train_data_dbpedia.jsonl",
"valid": _URL + "valid_data_dbpedia.jsonl",
"test": _URL + "test_data_dbpedia.jsonl",
"entity2id": _URL + "entity2id.json"
}
class InspiredConfig(datasets.BuilderConfig):
def __init__(self, features,
initiator_prefix='User: ',
respondent_prefix='System: ',
**kwargs):
"""BuilderConfig for Inspired (used in UniCRS).
Args:
features: *list[string]*, list of the features that will appear in the
feature dict. Should not include "label".
**kwargs: keyword arguments forwarded to super.
"""
super().__init__(version=datasets.Version("0.0.1"), **kwargs)
self.features = features
self.initiator_prefix = initiator_prefix
self.respondent_prefix = respondent_prefix
class Inspired(datasets.GeneratorBasedBuilder):
DEFAULT_CONFIG_NAME = "unrolled"
BUILDER_CONFIGS = [
InspiredConfig(
name="unrolled",
description="The processed Inspired dataset in UniCRS. Each conversation yields multiple samples",
features={
"messages": datasets.Sequence(datasets.Value("string")),
"rec": datasets.Sequence(datasets.Value("int32")),
"recNames": datasets.Sequence(datasets.Value("string")),
}
)
]
entity_pattern = "<entity>{}</entity>"
def __init__(self, **kwargs):
super().__init__(**kwargs)
def _info(self):
return datasets.DatasetInfo(
description=self.config.description,
features=datasets.Features(self.config.features),
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
urls_to_download = _URLS
downloaded_files = dl_manager.download_and_extract(urls_to_download)
entity2id_file = downloaded_files["entity2id"]
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN,
gen_kwargs={"filepath": downloaded_files["train"], "entity2id": entity2id_file}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": downloaded_files["valid"], "entity2id": entity2id_file}),
datasets.SplitGenerator(name=datasets.Split.TEST,
gen_kwargs={"filepath": downloaded_files["test"], "entity2id": entity2id_file}),
]
def _mark_entity(self, utt: str, entities: List[str]):
# If entities like "action movie" and "action" appear at the same time, we only mark the longer one
entities = sorted(list(set(entities)), key=lambda x: len(x), reverse=True)
for i, entity in enumerate(entities):
valid = True
for prev in entities[:i]:
if entity in prev:
valid = False
if valid:
utt = re.sub(entity, self.entity_pattern.format(entity), utt)
return utt
def _generate_examples(self, filepath, entity2id):
"""This function returns the examples in the raw (text) form."""
logger.info("generating examples from = %s", filepath)
with open(entity2id, 'r', encoding='utf-8') as f:
entity2id = json.load(f)
if "unrolled" in self.config.name:
Idx = 0
with open(filepath, encoding="utf-8") as f:
for line in f:
dialog = json.loads(line)
context = []
for turn in dialog:
resp = turn['text']
movie_turn = [entity2id[movie] for movie in turn['movie_link'] if movie in entity2id]
resp = self._mark_entity(resp, turn['entity_name']+turn['movie_name'])
prefix = self.config.initiator_prefix if turn['role'] == 'SEEKER' else self.config.respondent_prefix
resp = prefix + resp
context.append(resp)
yield Idx, {
'messages': context,
'rec': movie_turn,
'recNames': turn['movie_name']
}
Idx += 1