|
import json |
|
import re |
|
from typing import List, Dict |
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_URL = "./" |
|
_URLS = { |
|
"train": _URL + "train_data_dbpedia.jsonl", |
|
"valid": _URL + "valid_data_dbpedia.jsonl", |
|
"test": _URL + "test_data_dbpedia.jsonl", |
|
"entity2id": _URL + "entity2id.json" |
|
} |
|
|
|
|
|
class InspiredConfig(datasets.BuilderConfig): |
|
def __init__(self, features, |
|
initiator_prefix='User: ', |
|
respondent_prefix='System: ', |
|
**kwargs): |
|
"""BuilderConfig for Inspired (used in UniCRS). |
|
|
|
Args: |
|
features: *list[string]*, list of the features that will appear in the |
|
feature dict. Should not include "label". |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__(version=datasets.Version("0.0.1"), **kwargs) |
|
self.features = features |
|
self.initiator_prefix = initiator_prefix |
|
self.respondent_prefix = respondent_prefix |
|
|
|
class Inspired(datasets.GeneratorBasedBuilder): |
|
DEFAULT_CONFIG_NAME = "unrolled" |
|
BUILDER_CONFIGS = [ |
|
InspiredConfig( |
|
name="unrolled", |
|
description="The processed Inspired dataset in UniCRS. Each conversation yields multiple samples", |
|
features={ |
|
"messages": datasets.Sequence(datasets.Value("string")), |
|
"rec": datasets.Sequence(datasets.Value("int32")), |
|
"recNames": datasets.Sequence(datasets.Value("string")), |
|
} |
|
) |
|
] |
|
|
|
entity_pattern = "<entity>{}</entity>" |
|
|
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=self.config.description, |
|
features=datasets.Features(self.config.features), |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
urls_to_download = _URLS |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
entity2id_file = downloaded_files["entity2id"] |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": downloaded_files["train"], "entity2id": entity2id_file}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": downloaded_files["valid"], "entity2id": entity2id_file}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": downloaded_files["test"], "entity2id": entity2id_file}), |
|
] |
|
|
|
|
|
def _mark_entity(self, utt: str, entities: List[str]): |
|
|
|
entities = sorted(list(set(entities)), key=lambda x: len(x), reverse=True) |
|
for i, entity in enumerate(entities): |
|
valid = True |
|
for prev in entities[:i]: |
|
if entity in prev: |
|
valid = False |
|
if valid: |
|
utt = re.sub(entity, self.entity_pattern.format(entity), utt) |
|
return utt |
|
|
|
def _generate_examples(self, filepath, entity2id): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
|
|
with open(entity2id, 'r', encoding='utf-8') as f: |
|
entity2id = json.load(f) |
|
if "unrolled" in self.config.name: |
|
Idx = 0 |
|
with open(filepath, encoding="utf-8") as f: |
|
for line in f: |
|
dialog = json.loads(line) |
|
context = [] |
|
|
|
for turn in dialog: |
|
resp = turn['text'] |
|
movie_turn = [entity2id[movie] for movie in turn['movie_link'] if movie in entity2id] |
|
|
|
resp = self._mark_entity(resp, turn['entity_name']+turn['movie_name']) |
|
prefix = self.config.initiator_prefix if turn['role'] == 'SEEKER' else self.config.respondent_prefix |
|
resp = prefix + resp |
|
context.append(resp) |
|
|
|
yield Idx, { |
|
'messages': context, |
|
'rec': movie_turn, |
|
'recNames': turn['movie_name'] |
|
} |
|
|
|
Idx += 1 |
|
|
|
|
|
|