from __future__ import absolute_import, division, print_function import json import os import datasets _CITATION = """\ @article{scialom2020mlsum, title={MLSUM: The Multilingual Summarization Corpus}, author={Scialom, Thomas and Dray, Paul-Alexis and Lamprier, Sylvain and Piwowarski, Benjamin and Staiano, Jacopo}, journal={arXiv preprint arXiv:2004.14900}, year={2020} } """ _DESCRIPTION = """\ We present MLSUM, the first large-scale MultiLingual SUMmarization dataset. Obtained from online newspapers, it contains 1.5M+ article/summary pairs in five different languages -- namely, French, German, Spanish, Russian, Turkish. Together with English newspapers from the popular CNN/Daily mail dataset, the collected data form a large scale multilingual dataset which can enable new research directions for the text summarization community. We report cross-lingual comparative analyses based on state-of-the-art systems. These highlight existing biases which motivate the use of a multi-lingual dataset. """ _URL = "https://gitlab.lip6.fr/scialom/mlsum_data/-/raw/master/MLSUM/" _LANG = ["de", "es", "fr", "ru", "tu"] class Mlsum(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ datasets.BuilderConfig( name=lang, version=datasets.Version("1.0.0"), description="", ) for lang in _LANG ] def _info(self): return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # datasets.features.FeatureConnectors features=datasets.Features( { "text": datasets.Value("string"), "summary": datasets.Value("string"), "topic": datasets.Value("string"), "url": datasets.Value("string"), "title": datasets.Value("string"), "date": datasets.Value("string") # These are the features of your dataset like images, labels ... } ), # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=None, # Homepage of the dataset for documentation homepage="", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" # dl_manager is a datasets.download.DownloadManager that can be used to # download and extract URLs lang = str(self.config.name) urls_to_download = { "test": os.path.join(_URL, lang + "_test.zip"), "train": os.path.join(_URL, lang + "_train.zip"), "validation": os.path.join(_URL, lang + "_val.zip"), } downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(downloaded_files["train"], lang + "_train.jsonl"), "lang": lang, }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(downloaded_files["validation"], lang + "_val.jsonl"), "lang": lang, }, ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": os.path.join(downloaded_files["test"], lang + "_test.jsonl"), "lang": lang, }, ), ] def _generate_examples(self, filepath, lang): """Yields examples.""" with open(filepath, encoding="utf-8") as f: i = 0 for line in f: data = json.loads(line) i += 1 yield i, { "text": data["text"], "summary": data["summary"], "topic": data["topic"], "url": data["url"], "title": data["title"], "date": data["date"], }