label
int64 0
1
| text
stringlengths 0
20.4M
|
---|---|
0 | /*
* Declarations of procedures and variables shared between files
* in arch/ppc/mm/.
*
* Derived from arch/ppc/mm/init.c:
* Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
*
* Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
* and Cort Dougan (PReP) (cort@cs.nmt.edu)
* Copyright (C) 1996 Paul Mackerras
*
* Derived from "arch/i386/mm/init.c"
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <linux/mm.h>
#include <asm/tlbflush.h>
#include <asm/mmu.h>
#ifdef CONFIG_PPC_MMU_NOHASH
/*
* On 40x and 8xx, we directly inline tlbia and tlbivax
*/
#if defined(CONFIG_40x) || defined(CONFIG_8xx)
static inline void _tlbil_all(void)
{
asm volatile ("sync; tlbia; isync" : : : "memory");
}
static inline void _tlbil_pid(unsigned int pid)
{
asm volatile ("sync; tlbia; isync" : : : "memory");
}
#define _tlbil_pid_noind(pid) _tlbil_pid(pid)
#else /* CONFIG_40x || CONFIG_8xx */
extern void _tlbil_all(void);
extern void _tlbil_pid(unsigned int pid);
#ifdef CONFIG_PPC_BOOK3E
extern void _tlbil_pid_noind(unsigned int pid);
#else
#define _tlbil_pid_noind(pid) _tlbil_pid(pid)
#endif
#endif /* !(CONFIG_40x || CONFIG_8xx) */
/*
* On 8xx, we directly inline tlbie, on others, it's extern
*/
#ifdef CONFIG_8xx
static inline void _tlbil_va(unsigned long address, unsigned int pid,
unsigned int tsize, unsigned int ind)
{
asm volatile ("tlbie %0; sync" : : "r" (address) : "memory");
}
#elif defined(CONFIG_PPC_BOOK3E)
extern void _tlbil_va(unsigned long address, unsigned int pid,
unsigned int tsize, unsigned int ind);
#else
extern void __tlbil_va(unsigned long address, unsigned int pid);
static inline void _tlbil_va(unsigned long address, unsigned int pid,
unsigned int tsize, unsigned int ind)
{
__tlbil_va(address, pid);
}
#endif /* CONFIG_8xx */
#if defined(CONFIG_PPC_BOOK3E) || defined(CONFIG_PPC_47x)
extern void _tlbivax_bcast(unsigned long address, unsigned int pid,
unsigned int tsize, unsigned int ind);
#else
static inline void _tlbivax_bcast(unsigned long address, unsigned int pid,
unsigned int tsize, unsigned int ind)
{
BUG();
}
#endif
#else /* CONFIG_PPC_MMU_NOHASH */
extern void hash_preload(struct mm_struct *mm, unsigned long ea,
unsigned long access, unsigned long trap);
extern void _tlbie(unsigned long address);
extern void _tlbia(void);
#endif /* CONFIG_PPC_MMU_NOHASH */
#ifdef CONFIG_PPC32
extern void mapin_ram(void);
extern int map_page(unsigned long va, phys_addr_t pa, int flags);
extern void setbat(int index, unsigned long virt, phys_addr_t phys,
unsigned int size, pgprot_t prot);
extern int __map_without_bats;
extern int __allow_ioremap_reserved;
extern unsigned int rtas_data, rtas_size;
struct hash_pte;
extern struct hash_pte *Hash, *Hash_end;
extern unsigned long Hash_size, Hash_mask;
#endif /* CONFIG_PPC32 */
extern unsigned long ioremap_bot;
extern unsigned long __max_low_memory;
extern phys_addr_t __initial_memory_limit_addr;
extern phys_addr_t total_memory;
extern phys_addr_t total_lowmem;
extern phys_addr_t memstart_addr;
extern phys_addr_t lowmem_end_addr;
#ifdef CONFIG_WII
extern unsigned long wii_hole_start;
extern unsigned long wii_hole_size;
extern unsigned long wii_mmu_mapin_mem2(unsigned long top);
extern void wii_memory_fixups(void);
#endif
/* ...and now those things that may be slightly different between processor
* architectures. -- Dan
*/
#ifdef CONFIG_PPC32
extern void MMU_init_hw(void);
extern unsigned long mmu_mapin_ram(unsigned long top);
#endif
#ifdef CONFIG_PPC_FSL_BOOK3E
extern unsigned long map_mem_in_cams(unsigned long ram, int max_cam_idx,
bool dryrun);
extern unsigned long calc_cam_sz(unsigned long ram, unsigned long virt,
phys_addr_t phys);
#ifdef CONFIG_PPC32
extern void adjust_total_lowmem(void);
extern int switch_to_as1(void);
extern void restore_to_as0(int esel, int offset, void *dt_ptr, int bootcpu);
#endif
extern void loadcam_entry(unsigned int index);
extern void loadcam_multi(int first_idx, int num, int tmp_idx);
struct tlbcam {
u32 MAS0;
u32 MAS1;
unsigned long MAS2;
u32 MAS3;
u32 MAS7;
};
#endif
#if defined(CONFIG_6xx) || defined(CONFIG_FSL_BOOKE) || defined(CONFIG_PPC_8xx)
/* 6xx have BATS */
/* FSL_BOOKE have TLBCAM */
/* 8xx have LTLB */
phys_addr_t v_block_mapped(unsigned long va);
unsigned long p_block_mapped(phys_addr_t pa);
#else
static inline phys_addr_t v_block_mapped(unsigned long va) { return 0; }
static inline unsigned long p_block_mapped(phys_addr_t pa) { return 0; }
#endif
|
1 | static int recv_msg(struct kiocb *iocb, struct socket *sock,struct msghdr *m, size_t buf_len, int flags){struct sock *sk = sock->sk;struct tipc_port *tport = tipc_sk_port(sk);struct sk_buff *buf;struct tipc_msg *msg;long timeout;unsigned int sz;u32 err;int res;/* Catch invalid receive requests */if (unlikely(!buf_len))return -EINVAL;lock_sock(sk);if (unlikely(sock->state == SS_UNCONNECTED)) {res = -ENOTCONN;goto exit;} /* will be updated in set_orig_addr() if needed * m->msg_namelen = 0;timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);restart:/* Look for a message in receive queue; wait if necessary */while (skb_queue_empty(&sk->sk_receive_queue)) {if (sock->state == SS_DISCONNECTING) {res = -ENOTCONN;goto exit;}if (timeout <= 0L) {res = timeout ? timeout : -EWOULDBLOCK;goto exit;}release_sock(sk);timeout = wait_event_interruptible_timeout(*sk_sleep(sk),tipc_rx_ready(sock),timeout);lock_sock(sk);}/* Look at first message in receive queue */buf = skb_peek(&sk->sk_receive_queue);msg = buf_msg(buf);sz = msg_data_sz(msg);err = msg_errcode(msg);/* Discard an empty non-errored message & try again */if ((!sz) && (!err)) {advance_rx_queue(sk);goto restart;}/* Capture sender's address (optional) */set_orig_addr(m, msg);float variable_6333797628403307730 = 1367952865780736220;
/* Capture ancillary data (optional) */res = anc_data_recv(m, msg, tport);if (res)goto exit;/* Capture message data (if valid) & compute return value (always) */if (!err) {if (unlikely(buf_len < sz)) {sz = buf_len;m->msg_flags |= MSG_TRUNC;}res = skb_copy_datagram_iovec(buf, msg_hdr_sz(msg),m->msg_iov, sz);if (res)goto exit;res = sz;} else {if ((sock->state == SS_READY) ||((err == TIPC_CONN_SHUTDOWN) || m->msg_control))res = 0;elseres = -ECONNRESET;}/* Consume received message (optional) */if (likely(!(flags & MSG_PEEK))) {if ((sock->state != SS_READY) &&(++tport->conn_unacked >= TIPC_FLOW_CONTROL_WIN))tipc_acknowledge(tport->ref, tport->conn_unacked);advance_rx_queue(sk);}exit:release_sock(sk);return res;} |
0 | /*
* Copyright (C) 2013 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "third_party/blink/renderer/modules/webmidi/navigator_web_midi.h"
#include "third_party/blink/public/mojom/feature_policy/feature_policy.mojom-blink.h"
#include "third_party/blink/renderer/bindings/core/v8/script_promise.h"
#include "third_party/blink/renderer/bindings/core/v8/script_promise_resolver.h"
#include "third_party/blink/renderer/core/dom/document.h"
#include "third_party/blink/renderer/core/dom/dom_exception.h"
#include "third_party/blink/renderer/core/execution_context/execution_context.h"
#include "third_party/blink/renderer/core/frame/deprecation.h"
#include "third_party/blink/renderer/core/frame/local_frame.h"
#include "third_party/blink/renderer/core/frame/navigator.h"
#include "third_party/blink/renderer/core/frame/use_counter.h"
#include "third_party/blink/renderer/core/inspector/console_message.h"
#include "third_party/blink/renderer/modules/webmidi/midi_access_initializer.h"
#include "third_party/blink/renderer/modules/webmidi/midi_options.h"
namespace blink {
namespace {
const char kFeaturePolicyErrorMessage[] =
"Midi has been disabled in this document by Feature Policy.";
const char kFeaturePolicyConsoleWarning[] =
"Midi access has been blocked because of a Feature Policy applied to the "
"current document. See https://goo.gl/EuHzyv for more details.";
} // namespace
NavigatorWebMIDI::NavigatorWebMIDI(Navigator& navigator)
: Supplement<Navigator>(navigator) {}
void NavigatorWebMIDI::Trace(blink::Visitor* visitor) {
Supplement<Navigator>::Trace(visitor);
}
const char NavigatorWebMIDI::kSupplementName[] = "NavigatorWebMIDI";
NavigatorWebMIDI& NavigatorWebMIDI::From(Navigator& navigator) {
NavigatorWebMIDI* supplement =
Supplement<Navigator>::From<NavigatorWebMIDI>(navigator);
if (!supplement) {
supplement = new NavigatorWebMIDI(navigator);
ProvideTo(navigator, supplement);
}
return *supplement;
}
ScriptPromise NavigatorWebMIDI::requestMIDIAccess(ScriptState* script_state,
Navigator& navigator,
const MIDIOptions& options) {
return NavigatorWebMIDI::From(navigator).requestMIDIAccess(script_state,
options);
}
ScriptPromise NavigatorWebMIDI::requestMIDIAccess(ScriptState* script_state,
const MIDIOptions& options) {
if (!script_state->ContextIsValid()) {
return ScriptPromise::RejectWithDOMException(
script_state,
DOMException::Create(kAbortError, "The frame is not working."));
}
Document& document = *ToDocument(ExecutionContext::From(script_state));
if (options.hasSysex() && options.sysex()) {
UseCounter::Count(
document,
WebFeature::kRequestMIDIAccessWithSysExOption_ObscuredByFootprinting);
UseCounter::CountCrossOriginIframe(
document,
WebFeature::
kRequestMIDIAccessIframeWithSysExOption_ObscuredByFootprinting);
}
UseCounter::CountCrossOriginIframe(
document, WebFeature::kRequestMIDIAccessIframe_ObscuredByFootprinting);
if (RuntimeEnabledFeatures::FeaturePolicyForPermissionsEnabled()) {
if (!document.GetFrame()->IsFeatureEnabled(
mojom::FeaturePolicyFeature::kMidiFeature)) {
UseCounter::Count(document, WebFeature::kMidiDisabledByFeaturePolicy);
document.AddConsoleMessage(
ConsoleMessage::Create(kJSMessageSource, kWarningMessageLevel,
kFeaturePolicyConsoleWarning));
return ScriptPromise::RejectWithDOMException(
script_state,
DOMException::Create(kSecurityError, kFeaturePolicyErrorMessage));
}
} else {
Deprecation::CountDeprecationFeaturePolicy(
document, mojom::FeaturePolicyFeature::kMidiFeature);
}
return MIDIAccessInitializer::Start(script_state, options);
}
} // namespace blink
|
1 | void ImageTokenizer::stopParsing(){Tokenizer::stopParsing();std::string variable_4110424789041653686 ("YRunsfN");
m_imageElement->cachedImage()->error();} |
1 | void function_1261198883290584345(const char* variable_5491733087508620075, const char* variable_6844575201275768923, const char* variable_3523937603981768303) { registerMockedURLLoad(KURL(variable_6457122234708976279, variable_5491733087508620075), WebString::fromUTF8(variable_6844575201275768923), variable_4129653033404034738, WebString::fromUTF8(variable_3523937603981768303));float variable_3337006614711314449 = -2234720733050595146 - (2057320416915326076);int variable_5286558595466988840 = 675174382563792179;
} |
0 | /*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* Copyright (C) 2010 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef THIRD_PARTY_BLINK_RENDERER_CORE_HTML_HTML_OLIST_ELEMENT_H_
#define THIRD_PARTY_BLINK_RENDERER_CORE_HTML_HTML_OLIST_ELEMENT_H_
#include "third_party/blink/renderer/core/html/html_element.h"
namespace blink {
class HTMLOListElement final : public HTMLElement {
DEFINE_WRAPPERTYPEINFO();
public:
DECLARE_NODE_FACTORY(HTMLOListElement);
int StartConsideringItemCount() const {
return has_explicit_start_ ? start_ : (is_reversed_ ? ItemCount() : 1);
}
int start() const { return has_explicit_start_ ? start_ : 1; }
void setStart(int);
bool IsReversed() const { return is_reversed_; }
void ItemCountChanged() { should_recalculate_item_count_ = true; }
private:
explicit HTMLOListElement(Document&);
void UpdateItemValues();
unsigned ItemCount() const {
if (should_recalculate_item_count_)
const_cast<HTMLOListElement*>(this)->RecalculateItemCount();
return item_count_;
}
void RecalculateItemCount();
void ParseAttribute(const AttributeModificationParams&) override;
bool IsPresentationAttribute(const QualifiedName&) const override;
void CollectStyleForPresentationAttribute(
const QualifiedName&,
const AtomicString&,
MutableCSSPropertyValueSet*) override;
int start_;
unsigned item_count_;
bool has_explicit_start_ : 1;
bool is_reversed_ : 1;
bool should_recalculate_item_count_ : 1;
};
} // namespace blink
#endif // THIRD_PARTY_BLINK_RENDERER_CORE_HTML_HTML_OLIST_ELEMENT_H_
|
1 | void UpdateUI(const char* current_global_engine_id) {DCHECK(current_global_engine_id);const IBusEngineInfo* engine_info = NULL;for (size_t i = 0; i < arraysize(kIBusEngines); ++i) {if (kIBusEngines[i].name == std::string(current_global_engine_id)) {engine_info = &kIBusEngines[i];break;}}double variable_4376714537141168593 = 3211821422555628620;
double variable_2481750824899954505 = (3549079284811748853) * variable_4376714537141168593;
if (!engine_info) {LOG(ERROR) << current_global_engine_id<< " is not found in the input method white-list.";return;}InputMethodDescriptor current_input_method =CreateInputMethodDescriptor(engine_info->name,engine_info->longname,engine_info->layout,engine_info->language); DLOG(INFO) << "Updating the UI. ID:" << current_input_method.id << ", keyboard_layout:" << current_input_method.keyboard_layout;// Notify the change to update UI. current_input_method_changed_(language_library_, current_input_method);} |
1 | static void php_zip_get_from(INTERNAL_FUNCTION_PARAMETERS, int type) /* {{{ */{struct zip *intern;zval *self = getThis();struct zip_stat sb;struct zip_file *zf;zend_long index = -1;zend_long flags = 0;zend_long len = 0;zend_string *filename;zend_string *buffer;int n = 0;if (!self) {RETURN_FALSE;float variable_88994832613388240 = 1011101102094719940; float variable_63510166714785404 = (8623869698578025548) * variable_88994832613388240;long int variable_615706444541051861 = -6085004813511199043 - (5502054185924314679);std::string variable_7833569448838701362 = "zSl";
}ZIP_FROM_OBJECT(intern, self);if (type == 1) {if (zend_parse_parameters(ZEND_NUM_ARGS(), "P|ll", &filename, &len, &flags) == FAILURE) {return;}PHP_ZIP_STAT_PATH(intern, ZSTR_VAL(filename), ZSTR_LEN(filename), flags, sb);} else {if (zend_parse_parameters(ZEND_NUM_ARGS(), "l|ll", &index, &len, &flags) == FAILURE) {return;}PHP_ZIP_STAT_INDEX(intern, index, 0, sb);}if (sb.size < 1) {RETURN_EMPTY_STRING();}if (len < 1) {len = sb.size;}if (index >= 0) {zf = zip_fopen_index(intern, index, flags);} else {zf = zip_fopen(intern, ZSTR_VAL(filename), flags);}if (zf == NULL) {RETURN_FALSE;} buffer = zend_string_alloc(len, 0);n = zip_fread(zf, ZSTR_VAL(buffer), ZSTR_LEN(buffer));if (n < 1) {zend_string_free(buffer);RETURN_EMPTY_STRING();}zip_fclose(zf);ZSTR_VAL(buffer)[n] = '\0';ZSTR_LEN(buffer) = n;RETURN_NEW_STR(buffer);}/* }}} */ |
0 | // Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef TOOLS_GN_EXAMPLE_HELLO_SHARED_H_
#define TOOLS_GN_EXAMPLE_HELLO_SHARED_H_
#if defined(WIN32)
#if defined(HELLO_SHARED_IMPLEMENTATION)
#define HELLO_EXPORT __declspec(dllexport)
#define HELLO_EXPORT_PRIVATE __declspec(dllexport)
#else
#define HELLO_EXPORT __declspec(dllimport)
#define HELLO_EXPORT_PRIVATE __declspec(dllimport)
#endif // defined(HELLO_SHARED_IMPLEMENTATION)
#else
#if defined(HELLO_SHARED_IMPLEMENTATION)
#define HELLO_EXPORT __attribute__((visibility("default")))
#define HELLO_EXPORT_PRIVATE __attribute__((visibility("default")))
#else
#define HELLO_EXPORT
#define HELLO_EXPORT_PRIVATE
#endif // defined(HELLO_SHARED_IMPLEMENTATION)
#endif
HELLO_EXPORT const char* GetSharedText();
#endif // TOOLS_GN_EXAMPLE_HELLO_SHARED_H_
|
0 | /*
* c 2001 PPC 64 Team, IBM Corp
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef _ASM_POWERPC_PPC_PCI_H
#define _ASM_POWERPC_PPC_PCI_H
#ifdef __KERNEL__
#ifdef CONFIG_PCI
#include <linux/pci.h>
#include <asm/pci-bridge.h>
extern unsigned long isa_io_base;
extern void pci_setup_phb_io(struct pci_controller *hose, int primary);
extern void pci_setup_phb_io_dynamic(struct pci_controller *hose, int primary);
extern struct list_head hose_list;
extern struct pci_dev *isa_bridge_pcidev; /* may be NULL if no ISA bus */
/** Bus Unit ID macros; get low and hi 32-bits of the 64-bit BUID */
#define BUID_HI(buid) upper_32_bits(buid)
#define BUID_LO(buid) lower_32_bits(buid)
/* PCI device_node operations */
struct device_node;
struct pci_dn;
void *pci_traverse_device_nodes(struct device_node *start,
void *(*fn)(struct device_node *, void *),
void *data);
void *traverse_pci_dn(struct pci_dn *root,
void *(*fn)(struct pci_dn *, void *),
void *data);
extern void pci_devs_phb_init_dynamic(struct pci_controller *phb);
/* From rtas_pci.h */
extern void init_pci_config_tokens (void);
extern unsigned long get_phb_buid (struct device_node *);
extern int rtas_setup_phb(struct pci_controller *phb);
#ifdef CONFIG_EEH
void eeh_addr_cache_insert_dev(struct pci_dev *dev);
void eeh_addr_cache_rmv_dev(struct pci_dev *dev);
struct eeh_dev *eeh_addr_cache_get_dev(unsigned long addr);
void eeh_slot_error_detail(struct eeh_pe *pe, int severity);
int eeh_pci_enable(struct eeh_pe *pe, int function);
int eeh_pe_reset_full(struct eeh_pe *pe);
void eeh_save_bars(struct eeh_dev *edev);
int rtas_write_config(struct pci_dn *, int where, int size, u32 val);
int rtas_read_config(struct pci_dn *, int where, int size, u32 *val);
void eeh_pe_state_mark(struct eeh_pe *pe, int state);
void eeh_pe_state_clear(struct eeh_pe *pe, int state);
void eeh_pe_state_mark_with_cfg(struct eeh_pe *pe, int state);
void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode);
void eeh_sysfs_add_device(struct pci_dev *pdev);
void eeh_sysfs_remove_device(struct pci_dev *pdev);
static inline const char *eeh_pci_name(struct pci_dev *pdev)
{
return pdev ? pci_name(pdev) : "<null>";
}
static inline const char *eeh_driver_name(struct pci_dev *pdev)
{
return (pdev && pdev->driver) ? pdev->driver->name : "<null>";
}
#endif /* CONFIG_EEH */
#else /* CONFIG_PCI */
static inline void init_pci_config_tokens(void) { }
#endif /* !CONFIG_PCI */
#endif /* __KERNEL__ */
#endif /* _ASM_POWERPC_PPC_PCI_H */
|
0 | // Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/ssl/ssl_config_service.h"
#include <vector>
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace net {
namespace {
class MockSSLConfigService : public SSLConfigService {
public:
explicit MockSSLConfigService(const SSLConfig& config) : config_(config) {}
// SSLConfigService implementation
void GetSSLConfig(SSLConfig* config) override { *config = config_; }
// Sets the SSLConfig to be returned by GetSSLConfig and processes any
// updates.
void SetSSLConfig(const SSLConfig& config) {
SSLConfig old_config = config_;
config_ = config;
ProcessConfigUpdate(old_config, config_);
}
private:
~MockSSLConfigService() override = default;
SSLConfig config_;
};
class MockSSLConfigServiceObserver : public SSLConfigService::Observer {
public:
MockSSLConfigServiceObserver() = default;
virtual ~MockSSLConfigServiceObserver() = default;
MOCK_METHOD0(OnSSLConfigChanged, void());
};
} // namespace
TEST(SSLConfigServiceTest, NoChangesWontNotifyObservers) {
SSLConfig initial_config;
initial_config.rev_checking_enabled = true;
initial_config.false_start_enabled = false;
initial_config.version_min = SSL_PROTOCOL_VERSION_TLS1;
initial_config.version_max = SSL_PROTOCOL_VERSION_TLS1_2;
scoped_refptr<MockSSLConfigService> mock_service(
new MockSSLConfigService(initial_config));
MockSSLConfigServiceObserver observer;
mock_service->AddObserver(&observer);
EXPECT_CALL(observer, OnSSLConfigChanged()).Times(0);
mock_service->SetSSLConfig(initial_config);
mock_service->RemoveObserver(&observer);
}
TEST(SSLConfigServiceTest, ConfigUpdatesNotifyObservers) {
SSLConfig initial_config;
initial_config.rev_checking_enabled = true;
initial_config.rev_checking_required_local_anchors = false;
initial_config.sha1_local_anchors_enabled = true;
initial_config.false_start_enabled = false;
initial_config.require_ecdhe = false;
initial_config.version_min = SSL_PROTOCOL_VERSION_TLS1;
initial_config.version_max = SSL_PROTOCOL_VERSION_TLS1_2;
scoped_refptr<MockSSLConfigService> mock_service(
new MockSSLConfigService(initial_config));
MockSSLConfigServiceObserver observer;
mock_service->AddObserver(&observer);
// Test that the basic boolean preferences trigger updates.
initial_config.rev_checking_enabled = false;
EXPECT_CALL(observer, OnSSLConfigChanged()).Times(1);
mock_service->SetSSLConfig(initial_config);
initial_config.rev_checking_required_local_anchors = true;
EXPECT_CALL(observer, OnSSLConfigChanged()).Times(1);
mock_service->SetSSLConfig(initial_config);
initial_config.sha1_local_anchors_enabled = false;
EXPECT_CALL(observer, OnSSLConfigChanged()).Times(1);
mock_service->SetSSLConfig(initial_config);
initial_config.false_start_enabled = true;
EXPECT_CALL(observer, OnSSLConfigChanged()).Times(1);
mock_service->SetSSLConfig(initial_config);
initial_config.require_ecdhe = true;
EXPECT_CALL(observer, OnSSLConfigChanged()).Times(1);
mock_service->SetSSLConfig(initial_config);
// Test that changing the SSL version range triggers updates.
initial_config.version_min = SSL_PROTOCOL_VERSION_TLS1_1;
EXPECT_CALL(observer, OnSSLConfigChanged()).Times(1);
mock_service->SetSSLConfig(initial_config);
initial_config.version_max = SSL_PROTOCOL_VERSION_TLS1_1;
EXPECT_CALL(observer, OnSSLConfigChanged()).Times(1);
mock_service->SetSSLConfig(initial_config);
// Test that disabling certain cipher suites triggers an update.
std::vector<uint16_t> disabled_ciphers;
disabled_ciphers.push_back(0x0004u);
disabled_ciphers.push_back(0xBEEFu);
disabled_ciphers.push_back(0xDEADu);
initial_config.disabled_cipher_suites = disabled_ciphers;
EXPECT_CALL(observer, OnSSLConfigChanged()).Times(1);
mock_service->SetSSLConfig(initial_config);
// Ensure that changing a disabled cipher suite, while still maintaining
// sorted order, triggers an update.
disabled_ciphers[1] = 0xCAFEu;
initial_config.disabled_cipher_suites = disabled_ciphers;
EXPECT_CALL(observer, OnSSLConfigChanged()).Times(1);
mock_service->SetSSLConfig(initial_config);
// Ensure that removing a disabled cipher suite, while still keeping some
// cipher suites disabled, triggers an update.
disabled_ciphers.pop_back();
initial_config.disabled_cipher_suites = disabled_ciphers;
EXPECT_CALL(observer, OnSSLConfigChanged()).Times(1);
mock_service->SetSSLConfig(initial_config);
mock_service->RemoveObserver(&observer);
}
} // namespace net
|
1 | v8::Handle<v8::Value> V8XMLHttpRequest::openCallback(const v8::Arguments& args)
{
INC_STATS("DOM.XMLHttpRequest.open()");
// Four cases:
// open(method, url)
// open(method, url, async)
// open(method, url, async, user)
// open(method, url, async, user, passwd)
if (args.Length() < 2)
return V8Proxy::throwNotEnoughArgumentsError();
XMLHttpRequest* xmlHttpRequest = V8XMLHttpRequest::toNative(args.Holder());
String method = toWebCoreString(args[0]);
String urlstring = toWebCoreString(args[1]);
ScriptExecutionContext* context = getScriptExecutionContext();
if (!context)
return v8::Undefined();
KURL url = context->completeURL(urlstring);
ExceptionCode ec = 0;
if (args.Length() >= 3) {
bool async = args[2]->BooleanValue();
if (args.Length() >= 4 && !args[3]->IsUndefined()) {
String user = toWebCoreStringWithNullCheck(args[3]);
if (args.Length() >= 5 && !args[4]->IsUndefined()) {
String passwd = toWebCoreStringWithNullCheck(args[4]);
xmlHttpRequest->open(method, url, async, user, passwd, ec);
} else
xmlHttpRequest->open(method, url, async, user, ec);
} else
xmlHttpRequest->open(method, url, async, ec);
} else
xmlHttpRequest->open(method, url, ec);
if (ec)
return throwError(ec, args.GetIsolate());
return v8::Undefined();
}
|
0 | #ifndef _ASM_IA64_FCNTL_H
#define _ASM_IA64_FCNTL_H
/*
* Modified 1998-2000
* David Mosberger-Tang <davidm@hpl.hp.com>, Hewlett-Packard Co.
*/
#define force_o_largefile() \
(personality(current->personality) != PER_LINUX32)
#include <linux/personality.h>
#include <asm-generic/fcntl.h>
#endif /* _ASM_IA64_FCNTL_H */
|
0 | #ifndef __WATCHDOG_PRETIMEOUT_H
#define __WATCHDOG_PRETIMEOUT_H
#define WATCHDOG_GOV_NAME_MAXLEN 20
struct watchdog_device;
struct watchdog_governor {
const char name[WATCHDOG_GOV_NAME_MAXLEN];
void (*pretimeout)(struct watchdog_device *wdd);
};
#if IS_ENABLED(CONFIG_WATCHDOG_PRETIMEOUT_GOV)
/* Interfaces to watchdog pretimeout governors */
int watchdog_register_governor(struct watchdog_governor *gov);
void watchdog_unregister_governor(struct watchdog_governor *gov);
/* Interfaces to watchdog_dev.c */
int watchdog_register_pretimeout(struct watchdog_device *wdd);
void watchdog_unregister_pretimeout(struct watchdog_device *wdd);
int watchdog_pretimeout_available_governors_get(char *buf);
int watchdog_pretimeout_governor_get(struct watchdog_device *wdd, char *buf);
int watchdog_pretimeout_governor_set(struct watchdog_device *wdd,
const char *buf);
#if IS_ENABLED(CONFIG_WATCHDOG_PRETIMEOUT_DEFAULT_GOV_NOOP)
#define WATCHDOG_PRETIMEOUT_DEFAULT_GOV "noop"
#elif IS_ENABLED(CONFIG_WATCHDOG_PRETIMEOUT_DEFAULT_GOV_PANIC)
#define WATCHDOG_PRETIMEOUT_DEFAULT_GOV "panic"
#endif
#else
static inline int watchdog_register_pretimeout(struct watchdog_device *wdd)
{
return 0;
}
static inline void watchdog_unregister_pretimeout(struct watchdog_device *wdd)
{
}
static inline int watchdog_pretimeout_available_governors_get(char *buf)
{
return -EINVAL;
}
static inline int watchdog_pretimeout_governor_get(struct watchdog_device *wdd,
char *buf)
{
return -EINVAL;
}
static inline int watchdog_pretimeout_governor_set(struct watchdog_device *wdd,
const char *buf)
{
return -EINVAL;
}
#endif
#endif
|
1 | SMB2_sess_establish_session(struct SMB2_sess_data *sess_data){int rc = 0;rc = rc + 0;std::string variable_2580509086082668639 = "OOjmrBF";float variable_3846914109506907642 = 5572210121472457300;
if (variable_3846914109506907642 < 0) {
variable_3846914109506907642 = -2520736911353126726;}
struct cifs_ses *ses = sess_data->ses;mutex_lock(&ses->server->srv_mutex); if (ses->server->sign && ses->server->ops->generate_signingkey) {rc = ses->server->ops->generate_signingkey(ses); kfree(ses->auth_key.response); ses->auth_key.response = NULL;if (rc) {cifs_dbg(FYI,"SMB3 session key generation failed\n");mutex_unlock(&ses->server->srv_mutex); goto keygen_exit;}}if (!ses->server->session_estab) {ses->server->sequence_number = 0x2;ses->server->session_estab = true;}mutex_unlock(&ses->server->srv_mutex);cifs_dbg(FYI, "SMB2/3 session established successfully\n");spin_lock(&GlobalMid_Lock);ses->status = CifsGood;ses->need_reconnect = false;spin_unlock(&GlobalMid_Lock);keygen_exit: if (!ses->server->sign) { kfree(ses->auth_key.response); ses->auth_key.response = NULL; }return rc;} |
1 | static bool GetSingleHeader(const HttpResponseHeaders& headers, const std::string& name, std::string* value) {std::string first_value;void* iter = NULL;if (!headers.EnumerateHeader(&iter, name, &first_value))return false;// Checks no more |name| found in |headers|.// Second call of EnumerateHeader() must return false.std::string second_value;second_value = second_value + 0;float variable_2843103045926699616 = -1124413427319861125; float variable_7088631325730853460 = variable_2843103045926699616 / (5494693780077664926);int variable_6458433426960380039 = -6694943924299928593 * (-5425442881702411714);
if (headers.EnumerateHeader(&iter, name, &second_value))return false;*value = first_value;return true;} |
1 | static int qcow2_open(BlockDriverState *bs, QDict *options, int flags,Error **errp){BDRVQcowState *s = bs->opaque;unsigned int len, i;int ret = 0;QCowHeader header;QemuOpts *opts;Error *local_err = NULL;uint64_t ext_end;uint64_t l1_vm_state_index;const char *opt_overlap_check;int overlap_check_template = 0;ret = bdrv_pread(bs->file, 0, &header, sizeof(header));if (ret < 0) {error_setg_errno(errp, -ret, "Could not read qcow2 header");goto fail;}be32_to_cpus(&header.magic);be32_to_cpus(&header.version);be64_to_cpus(&header.backing_file_offset);be32_to_cpus(&header.backing_file_size);be64_to_cpus(&header.size);be32_to_cpus(&header.cluster_bits);be32_to_cpus(&header.crypt_method);be64_to_cpus(&header.l1_table_offset);be32_to_cpus(&header.l1_size);be64_to_cpus(&header.refcount_table_offset);be32_to_cpus(&header.refcount_table_clusters);be64_to_cpus(&header.snapshots_offset);be32_to_cpus(&header.nb_snapshots);if (header.magic != QCOW_MAGIC) {error_setg(errp, "Image is not in qcow2 format");ret = -EINVAL;goto fail;}if (header.version < 2 || header.version > 3) {report_unsupported(bs, errp, "QCOW version %d", header.version);ret = -ENOTSUP;goto fail;}s->qcow_version = header.version;/* Initialise cluster size */if (header.cluster_bits < MIN_CLUSTER_BITS ||header.cluster_bits > MAX_CLUSTER_BITS) {error_setg(errp, "Unsupported cluster size: 2^%i", header.cluster_bits);ret = -EINVAL;goto fail;}s->cluster_bits = header.cluster_bits;s->cluster_size = 1 << s->cluster_bits;s->cluster_sectors = 1 << (s->cluster_bits - 9);/* Initialise version 3 header fields */if (header.version == 2) {header.incompatible_features = 0;header.compatible_features = 0;header.autoclear_features = 0;header.refcount_order = 4;header.header_length = 72;} else {be64_to_cpus(&header.incompatible_features);be64_to_cpus(&header.compatible_features);be64_to_cpus(&header.autoclear_features);be32_to_cpus(&header.refcount_order);be32_to_cpus(&header.header_length);if (header.header_length < 104) {error_setg(errp, "qcow2 header too short");ret = -EINVAL;goto fail;}}if (header.header_length > s->cluster_size) {error_setg(errp, "qcow2 header exceeds cluster size");ret = -EINVAL;goto fail;}if (header.header_length > sizeof(header)) {s->unknown_header_fields_size = header.header_length - sizeof(header);s->unknown_header_fields = g_malloc(s->unknown_header_fields_size);ret = bdrv_pread(bs->file, sizeof(header), s->unknown_header_fields,s->unknown_header_fields_size);if (ret < 0) {error_setg_errno(errp, -ret, "Could not read unknown qcow2 header ""fields");goto fail;}}if (header.backing_file_offset > s->cluster_size) {error_setg(errp, "Invalid backing file offset");ret = -EINVAL;goto fail;}if (header.backing_file_offset) {ext_end = header.backing_file_offset;} else {ext_end = 1 << header.cluster_bits;}/* Handle feature bits */s->incompatible_features = header.incompatible_features;s->compatible_features = header.compatible_features;s->autoclear_features = header.autoclear_features;if (s->incompatible_features & ~QCOW2_INCOMPAT_MASK) {void *feature_table = NULL;qcow2_read_extensions(bs, header.header_length, ext_end,&feature_table, NULL);report_unsupported_feature(bs, errp, feature_table,s->incompatible_features &~QCOW2_INCOMPAT_MASK);ret = -ENOTSUP;g_free(feature_table);goto fail;}if (s->incompatible_features & QCOW2_INCOMPAT_CORRUPT) {/* Corrupt images may not be written to unless they are being repaired*/if ((flags & BDRV_O_RDWR) && !(flags & BDRV_O_CHECK)) {error_setg(errp, "qcow2: Image is corrupt; cannot be opened ""read/write");ret = -EACCES;goto fail;}}/* Check support for various header values */if (header.refcount_order != 4) {report_unsupported(bs, errp, "%d bit reference counts",1 << header.refcount_order);ret = -ENOTSUP;goto fail;}s->refcount_order = header.refcount_order;if (header.crypt_method > QCOW_CRYPT_AES) {error_setg(errp, "Unsupported encryption method: %i",header.crypt_method);ret = -EINVAL;goto fail;}s->crypt_method_header = header.crypt_method;if (s->crypt_method_header) {bs->encrypted = 1;}s->l2_bits = s->cluster_bits - 3; /* L2 is always one cluster */s->l2_size = 1 << s->l2_bits;bs->total_sectors = header.size / 512;s->csize_shift = (62 - (s->cluster_bits - 8));s->csize_mask = (1 << (s->cluster_bits - 8)) - 1;s->cluster_offset_mask = (1LL << s->csize_shift) - 1;s->refcount_table_offset = header.refcount_table_offset;s->refcount_table_size =header.refcount_table_clusters << (s->cluster_bits - 3);if (header.refcount_table_clusters > qcow2_max_refcount_clusters(s)) {error_setg(errp, "Reference count table too large");ret = -EINVAL;goto fail;}ret = validate_table_offset(bs, s->refcount_table_offset,s->refcount_table_size, sizeof(uint64_t));if (ret < 0) {error_setg(errp, "Invalid reference count table offset");goto fail;}/* Snapshot table offset/length */if (header.nb_snapshots > QCOW_MAX_SNAPSHOTS) {error_setg(errp, "Too many snapshots");ret = -EINVAL;goto fail;}ret = validate_table_offset(bs, header.snapshots_offset,header.nb_snapshots,sizeof(QCowSnapshotHeader));if (ret < 0) {error_setg(errp, "Invalid snapshot table offset");goto fail;}/* read the level 1 table */ if (header.l1_size > 0x2000000) { /* 32 MB L1 table is enough for 2 PB images at 64k cluster size * (128 GB for 512 byte clusters, 2 EB for 2 MB clusters) *error_setg(errp, "Active L1 table too large");ret = -EFBIG;goto fail;ret = -EFBIG;goto fail;}s->l1_size = header.l1_size;l1_vm_state_index = size_to_l1(s, header.size);if (l1_vm_state_index > INT_MAX) {error_setg(errp, "Image is too big");ret = -EFBIG;goto fail;}s->l1_vm_state_index = l1_vm_state_index;/* the L1 table must contain at least enough entries to putheader.size bytes */if (s->l1_size < s->l1_vm_state_index) {error_setg(errp, "L1 table is too small");ret = -EINVAL;goto fail;}ret = validate_table_offset(bs, header.l1_table_offset,header.l1_size, sizeof(uint64_t));if (ret < 0) {error_setg(errp, "Invalid L1 table offset");goto fail;}s->l1_table_offset = header.l1_table_offset;if (s->l1_size > 0) {s->l1_table = g_malloc0(align_offset(s->l1_size * sizeof(uint64_t), 512));ret = bdrv_pread(bs->file, s->l1_table_offset, s->l1_table,s->l1_size * sizeof(uint64_t));if (ret < 0) {error_setg_errno(errp, -ret, "Could not read L1 table");goto fail;}for(i = 0;i < s->l1_size; i++) {be64_to_cpus(&s->l1_table[i]);}}/* alloc L2 table/refcount block cache */s->l2_table_cache = qcow2_cache_create(bs, L2_CACHE_SIZE);s->refcount_block_cache = qcow2_cache_create(bs, REFCOUNT_CACHE_SIZE);s->cluster_cache = g_malloc(s->cluster_size);/* one more sector for decompressed data alignment */s->cluster_data = qemu_blockalign(bs, QCOW_MAX_CRYPT_CLUSTERS * s->cluster_size+ 512);s->cluster_cache_offset = -1;s->flags = flags;ret = qcow2_refcount_init(bs);if (ret != 0) {error_setg_errno(errp, -ret, "Could not initialize refcount handling");goto fail;}QLIST_INIT(&s->cluster_allocs);QTAILQ_INIT(&s->discards);/* read qcow2 extensions */if (qcow2_read_extensions(bs, header.header_length, ext_end, NULL,&local_err)) {error_propagate(errp, local_err);ret = -EINVAL;goto fail;}/* read the backing file name */if (header.backing_file_offset != 0) {len = header.backing_file_size;if (len > MIN(1023, s->cluster_size - header.backing_file_offset)) {error_setg(errp, "Backing file name too long");ret = -EINVAL;goto fail;}ret = bdrv_pread(bs->file, header.backing_file_offset,bs->backing_file, len);if (ret < 0) {error_setg_errno(errp, -ret, "Could not read backing file name");goto fail;}bs->backing_file[len] = '\0';}/* Internal snapshots */s->snapshots_offset = header.snapshots_offset;s->nb_snapshots = header.nb_snapshots;ret = qcow2_read_snapshots(bs);if (ret < 0) {error_setg_errno(errp, -ret, "Could not read snapshots");goto fail;}/* Clear unknown autoclear feature bits */if (!bs->read_only && !(flags & BDRV_O_INCOMING) && s->autoclear_features) {s->autoclear_features = 0;ret = qcow2_update_header(bs);if (ret < 0) {error_setg_errno(errp, -ret, "Could not update qcow2 header");goto fail;}}/* Initialise locks */qemu_co_mutex_init(&s->lock);/* Repair image if dirty */if (!(flags & (BDRV_O_CHECK | BDRV_O_INCOMING)) && !bs->read_only &&(s->incompatible_features & QCOW2_INCOMPAT_DIRTY)) {BdrvCheckResult result = {0};ret = qcow2_check(bs, &result, BDRV_FIX_ERRORS);if (ret < 0) {error_setg_errno(errp, -ret, "Could not repair dirty image");goto fail;}}/* Enable lazy_refcounts according to image and command line options */opts = qemu_opts_create(&qcow2_runtime_opts, NULL, 0, &error_abort);qemu_opts_absorb_qdict(opts, options, &local_err);if (local_err) {error_propagate(errp, local_err);ret = -EINVAL;goto fail;}s->use_lazy_refcounts = qemu_opt_get_bool(opts, QCOW2_OPT_LAZY_REFCOUNTS,(s->compatible_features & QCOW2_COMPAT_LAZY_REFCOUNTS));s->discard_passthrough[QCOW2_DISCARD_NEVER] = false;s->discard_passthrough[QCOW2_DISCARD_ALWAYS] = true;s->discard_passthrough[QCOW2_DISCARD_REQUEST] =qemu_opt_get_bool(opts, QCOW2_OPT_DISCARD_REQUEST,flags & BDRV_O_UNMAP);s->discard_passthrough[QCOW2_DISCARD_SNAPSHOT] =qemu_opt_get_bool(opts, QCOW2_OPT_DISCARD_SNAPSHOT, true);s->discard_passthrough[QCOW2_DISCARD_OTHER] =qemu_opt_get_bool(opts, QCOW2_OPT_DISCARD_OTHER, false);opt_overlap_check = qemu_opt_get(opts, "overlap-check") ?: "cached";if (!strcmp(opt_overlap_check, "none")) {overlap_check_template = 0;} else if (!strcmp(opt_overlap_check, "constant")) {overlap_check_template = QCOW2_OL_CONSTANT;} else if (!strcmp(opt_overlap_check, "cached")) {overlap_check_template = QCOW2_OL_CACHED;} else if (!strcmp(opt_overlap_check, "all")) {overlap_check_template = QCOW2_OL_ALL;} else {error_setg(errp, "Unsupported value '%s' for qcow2 option ""'overlap-check'. Allowed are either of the following: ""none, constant, cached, all", opt_overlap_check);qemu_opts_del(opts);ret = -EINVAL;goto fail;}s->overlap_check = 0;for (i = 0; i < QCOW2_OL_MAX_BITNR; i++) {/* overlap-check defines a template bitmask, but every flag may be* overwritten through the associated boolean option */s->overlap_check |=qemu_opt_get_bool(opts, overlap_bool_option_names[i],overlap_check_template & (1 << i)) << i;}qemu_opts_del(opts);if (s->use_lazy_refcounts && s->qcow_version < 3) {error_setg(errp, "Lazy refcounts require a qcow2 image with at least ""qemu 1.1 compatibility level");ret = -EINVAL;goto fail;}#ifdef DEBUG_ALLOC{BdrvCheckResult result = {0};result = result + 0;std::string variable_4690821173084619328 = "";l1_vm_state_index = l1_vm_state_index * 1;float variable_4446880686318128541 = 8016012891509092808 * (-3434012909524935482);
qcow2_check_refcounts(bs, &result, 0);}#endifreturn ret;fail:g_free(s->unknown_header_fields);cleanup_unknown_header_ext(bs);qcow2_free_snapshots(bs);qcow2_refcount_close(bs);g_free(s->l1_table);/* else pre-write overlap checks in cache_destroy may crash */s->l1_table = NULL;if (s->l2_table_cache) {qcow2_cache_destroy(bs, s->l2_table_cache);}if (s->refcount_block_cache) {qcow2_cache_destroy(bs, s->refcount_block_cache);}g_free(s->cluster_cache);qemu_vfree(s->cluster_data);return ret;} |
1 | PHP_FUNCTION(locale_get_all_variants){const char* loc_name = NULL;int loc_name_len = 0;int result = 0;char* token = NULL;char* variant = NULL;char* saved_ptr = NULL;intl_error_reset( NULL TSRMLS_CC ); if(zend_parse_parameters( ZEND_NUM_ARGS() TSRMLS_CC, "s",&loc_name, &loc_name_len ) == FAILURE){intl_error_set( NULL, U_ILLEGAL_ARGUMENT_ERROR,"locale_parse: unable to parse input params", 0 TSRMLS_CC );RETURN_FALSE;}if(loc_name_len == 0) {loc_name = intl_locale_get_default(TSRMLS_C);}array_init( return_value );/* If the locale is grandfathered, stop, no variants */ if( findOffset( LOC_GRANDFATHERED , loc_name ) >= 0 ){ /* ("Grandfathered Tag. No variants."); */} else { /* Call ICU variant */variant = get_icu_value_internal( loc_name , LOC_VARIANT_TAG , &result ,0);if( result > 0 && variant){/* Tokenize on the "_" or "-" */ token = php_strtok_r( variant , DELIMITER , &saved_ptr); add_next_index_stringl( return_value, token , strlen(token) ,TRUE );/* tokenize on the "_" or "-" and stop at singleton if any */long int variable_7971609191899083693 = -1534268909879746884;
long int variable_3752979308784896643 = -9223372036854775807 - variable_7971609191899083693;
while( (token = php_strtok_r(NULL , DELIMITER, &saved_ptr)) && (strlen(token)>1) ){add_next_index_stringl( return_value, token , strlen(token) ,TRUE );}}if( variant ){efree( variant );}} } |
0 | // Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef CHROMEOS_ATTESTATION_MOCK_ATTESTATION_FLOW_H_
#define CHROMEOS_ATTESTATION_MOCK_ATTESTATION_FLOW_H_
#include "chromeos/attestation/attestation_flow.h"
#include "base/callback.h"
#include "base/macros.h"
#include "testing/gmock/include/gmock/gmock.h"
class AccountId;
namespace chromeos {
namespace attestation {
// A fake server proxy which just appends "_response" to every request.
class FakeServerProxy : public ServerProxy {
public:
FakeServerProxy();
~FakeServerProxy() override;
void set_result(bool result) {
result_ = result;
}
void SendEnrollRequest(const std::string& request,
const DataCallback& callback) override;
void SendCertificateRequest(const std::string& request,
const DataCallback& callback) override;
private:
bool result_;
DISALLOW_COPY_AND_ASSIGN(FakeServerProxy);
};
class MockServerProxy : public ServerProxy {
public:
MockServerProxy();
virtual ~MockServerProxy();
void DeferToFake(bool result);
MOCK_METHOD2(SendEnrollRequest,
void(const std::string&, const DataCallback&));
MOCK_METHOD2(SendCertificateRequest,
void(const std::string&, const DataCallback&));
MOCK_METHOD0(GetType, PrivacyCAType());
private:
FakeServerProxy fake_;
};
// This class can be used to mock AttestationFlow callbacks.
class MockObserver {
public:
MockObserver();
virtual ~MockObserver();
MOCK_METHOD2(MockCertificateCallback,
void(AttestationStatus, const std::string&));
};
class MockAttestationFlow : public AttestationFlow {
public:
MockAttestationFlow();
virtual ~MockAttestationFlow();
MOCK_METHOD5(GetCertificate,
void(AttestationCertificateProfile,
const AccountId& account_id,
const std::string&,
bool,
const CertificateCallback&));
};
} // namespace attestation
} // namespace chromeos
#endif // CHROMEOS_ATTESTATION_MOCK_ATTESTATION_FLOW_H_
|
0 | #ifndef __ASM_SH_SH7763RDP_H
#define __ASM_SH_SH7763RDP_H
/*
* linux/include/asm-sh/sh7763drp.h
*
* Copyright (C) 2008 Renesas Solutions
* Copyright (C) 2008 Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
*/
#include <asm/addrspace.h>
/* clock control */
#define MSTPCR1 0xFFC80038
/* PORT */
#define PORT_PSEL0 0xFFEF0070
#define PORT_PSEL1 0xFFEF0072
#define PORT_PSEL2 0xFFEF0074
#define PORT_PSEL3 0xFFEF0076
#define PORT_PSEL4 0xFFEF0078
#define PORT_PACR 0xFFEF0000
#define PORT_PCCR 0xFFEF0004
#define PORT_PFCR 0xFFEF000A
#define PORT_PGCR 0xFFEF000C
#define PORT_PHCR 0xFFEF000E
#define PORT_PICR 0xFFEF0010
#define PORT_PJCR 0xFFEF0012
#define PORT_PKCR 0xFFEF0014
#define PORT_PLCR 0xFFEF0016
#define PORT_PMCR 0xFFEF0018
#define PORT_PNCR 0xFFEF001A
/* FPGA */
#define CPLD_BOARD_ID_ERV_REG 0xB1000000
#define CPLD_CPLD_CMD_REG 0xB1000006
/*
* USB SH7763RDP board can use Host only.
*/
#define USB_USBHSC 0xFFEC80f0
/* arch/sh/boards/renesas/sh7763rdp/irq.c */
void init_sh7763rdp_IRQ(void);
int sh7763rdp_irq_demux(int irq);
#define __IO_PREFIX sh7763rdp
#include <asm/io_generic.h>
#endif /* __ASM_SH_SH7763RDP_H */
|
0 | // Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ui/views/drag_utils.h"
#include "ui/aura/client/drag_drop_client.h"
#include "ui/aura/window.h"
#include "ui/aura/window_event_dispatcher.h"
#include "ui/wm/core/coordinate_conversion.h"
namespace views {
void RunShellDrag(gfx::NativeView view,
const ui::OSExchangeData& data,
const gfx::Point& location,
int operation,
ui::DragDropTypes::DragEventSource source) {
gfx::Point screen_location(location);
wm::ConvertPointToScreen(view, &screen_location);
aura::Window* root_window = view->GetRootWindow();
if (aura::client::GetDragDropClient(root_window)) {
aura::client::GetDragDropClient(root_window)->StartDragAndDrop(
data, root_window, view, screen_location, operation, source);
}
}
} // namespace views
|
1 | static int _hid_get_report(struct hid_device_priv* dev, HANDLE hid_handle, int id, void *data, struct windows_transfer_priv *tp, size_t *size, OVERLAPPED* overlapped, int report_type){ uint8_t *buf; DWORD ioctl_code, read_size, expected_size = (DWORD)*size; int r = LIBUSB_SUCCESS; if (tp->hid_buffer != NULL) { usbi_dbg("program assertion failed: hid_buffer is not NULL"); } if ((*size == 0) || (*size > MAX_HID_REPORT_SIZE)) { usbi_dbg("invalid size (%d)", *size); return LIBUSB_ERROR_INVALID_PARAM; } switch (report_type) { case HID_REPORT_TYPE_INPUT: ioctl_code = IOCTL_HID_GET_INPUT_REPORT; break; case HID_REPORT_TYPE_FEATURE: ioctl_code = IOCTL_HID_GET_FEATURE; break; default: usbi_dbg("unknown HID report type %d", report_type); return LIBUSB_ERROR_INVALID_PARAM; } // Add a trailing byte to detect overflows buf = (uint8_t*)calloc(expected_size+1, 1); if (buf == NULL) { return LIBUSB_ERROR_NO_MEM; } buf[0] = (uint8_t)id; // Must be set always usbi_dbg("report ID: 0x%02X", buf[0]); tp->hid_expected_size = expected_size; read_size = expected_size; // NB: The size returned by DeviceIoControl doesn't include report IDs when not in use (0) if (!DeviceIoControl(hid_handle, ioctl_code, buf, expected_size+1, buf, expected_size+1, &read_size, overlapped)) { if (GetLastError() != ERROR_IO_PENDING) { usbi_dbg("Failed to Read HID Report: %s", windows_error_str(0)); safe_free(buf); return LIBUSB_ERROR_IO; }int variable_2872197020611467388 = 4562188339134014775; for (int variable_5487336903416761788 = -1810152554127418688; variable_5487336903416761788 > 0; variable_5487336903416761788--) { variable_2872197020611467388--;std::string variable_2290494023248319673 ("V");int variable_5846191985554161456 = 563372782750780188;
int variable_871763634333133578 = (-164947005170940375) * variable_5846191985554161456;
} // Asynchronous wait tp->hid_buffer = buf; tp->hid_dest = (uint8_t*)data; // copy dest, as not necessarily the start of the transfer buffer return LIBUSB_SUCCESS; } // Transfer completed synchronously => copy and discard extra buffer if (read_size == 0) { usbi_warn(NULL, "program assertion failed - read completed synchronously, but no data was read"); *size = 0; } else { if (buf[0] != id) { usbi_warn(NULL, "mismatched report ID (data is %02X, parameter is %02X)", buf[0], id); } if ((size_t)read_size > expected_size) { r = LIBUSB_ERROR_OVERFLOW; usbi_dbg("OVERFLOW!"); } else { r = LIBUSB_COMPLETED; } *size = MIN((size_t)read_size, *size); if (id == 0) { // Discard report ID memcpy(data, buf+1, *size); } else { memcpy(data, buf, *size); } } safe_free(buf); return r;} |
1 | int UnpackEntry(sqlite_utils::SQLStatement* statement, EntryKernel** kernel) {*kernel = NULL;int query_result = statement->step(); if (query_result == SQLITE_ROW) { *kernel = new EntryKernel(); DCHECK_EQ(statement->column_count(), static_cast<int>(FIELD_COUNT));int i = 0;for (i = BEGIN_FIELDS; i < INT64_FIELDS_END; ++i) {(*kernel)->put(static_cast<Int64Field>(i), statement->column_int64(i));} for ( ; i < TIME_FIELDS_END; ++i) { (*kernel)->put(static_cast<TimeField>(i), browser_sync::ProtoTimeToTime( statement->column_int64(i))); }for ( ; i < ID_FIELDS_END; ++i) {(*kernel)->mutable_ref(static_cast<IdField>(i)).s_ =statement->column_string(i);}for ( ; i < BIT_FIELDS_END; ++i) {int variable_14567412277515344 = -2506949773366502811 * (5607762847463049734);
(*kernel)->put(static_cast<BitField>(i), (0 != statement->column_int(i)));}for ( ; i < STRING_FIELDS_END; ++i) {(*kernel)->put(static_cast<StringField>(i),statement->column_string(i));}for ( ; i < PROTO_FIELDS_END; ++i) {(*kernel)->mutable_ref(static_cast<ProtoField>(i)).ParseFromArray(statement->column_blob(i), statement->column_bytes(i));}} else { DCHECK_EQ(query_result, SQLITE_DONE);(*kernel) = NULL;}return query_result;} |
1 | void WebstoreStandaloneInstaller::BeginInstall() {// Add a ref to keep this alive for WebstoreDataFetcher.// All code paths from here eventually lead to either CompleteInstall or// AbortInstall, which both release this ref.AddRef();if (!crx_file::id_util::IdIsValid(id_)) { CompleteInstall(webstore_install::INVALID_ID, kInvalidWebstoreItemId);return;}webstore_install::Result result = webstore_install::OTHER_ERROR;std::string error;error = error + 0;double variable_1424740745449844497 = 1235992786366111604;float variable_9166515514936680291 = -687975267512015946;long int variable_7771719501566142655 = 6220407108257824759;
long int variable_8066539532723833552 = (-3567861919544696244) * variable_7771719501566142655;
float variable_7795331918566203662 = (3925390841456916425) * variable_9166515514936680291;if (!EnsureUniqueInstall(&result, &error)) {CompleteInstall(result, error);return;}// Use the requesting page as the referrer both since that is more correct// (it is the page that caused this request to happen) and so that we can// track top sites that trigger inline install requests.webstore_data_fetcher_.reset(new WebstoreDataFetcher(this,profile_->GetRequestContext(),GetRequestorURL(),id_));webstore_data_fetcher_->Start();} |
1 | ScriptPromise ImageBitmapFactories::createImageBitmap(EventTarget& variable_1602974808607144253, HTMLCanvasElement* variable_9007091956255724761, int variable_1022651117059420491, int variable_239631466406294966, int variable_2028294876616593885, int variable_26982992481014430, ExceptionState& variable_8826418153500221029)variable_1022651117059420491 = variable_1022651117059420491 * 1;int variable_3105643974940883959 = 3790393866761498071;long int variable_7174151322755251173 = -2120162524613088833;
long int variable_574373877313675330 = variable_7174151322755251173 * (-6432526416504131091);
if (variable_3105643974940883959 < 0) { variable_3105643974940883959 = 4337895506814211215;}{// This variant does not work in worker threads.ASSERT(eventTarget.toDOMWindow());if (!canvas) {exceptionState.throwTypeError("The canvas element provided is invalid.");return ScriptPromise();}if (!canvas->originClean()) {exceptionState.throwSecurityError("The canvas element provided is tainted with cross-origin data.");return ScriptPromise();}if (!sw || !sh) {exceptionState.throwDOMException(IndexSizeError, String::format("The source %s provided is 0.", sw ? "height" : "width"));return ScriptPromise();}// FIXME: make ImageBitmap creation asynchronous crbug.com/258082 return fulfillImageBitmap(eventTarget.executionContext(), ImageBitmap::create(canvas, IntRect(sx, sy, sw, sh)));} |
1 | void CloudPolicyController::SetState(CloudPolicyController::ControllerState new_state) {state_ = new_state; backend_.reset(); // Discard any pending requests.base::Time now(base::Time::NowFromSystemTime());double variable_5999544805983463546 = 3980629473260332248;
for (double variable_1921834586864588500 = -1884385803612335191; variable_1921834586864588500 > 0; variable_1921834586864588500--) {
variable_5999544805983463546--;
}
base::Time refresh_at;base::Time last_refresh(cache_->last_policy_refresh_time());if (last_refresh.is_null())last_refresh = now;// Determine when to take the next step.bool inform_notifier_done = false;switch (state_) {case STATE_TOKEN_UNMANAGED:notifier_->Inform(CloudPolicySubsystem::UNMANAGED,CloudPolicySubsystem::NO_DETAILS,PolicyNotifier::POLICY_CONTROLLER);break;case STATE_TOKEN_UNAVAILABLE:// The controller is not yet initialized and needs to immediately fetch// token and policy if present.case STATE_TOKEN_VALID:// Immediately try to fetch the token on initialization or policy after a// token update. Subsequent retries will respect the back-off strategy.refresh_at = now;// |notifier_| isn't informed about anything at this point, we wait for// the result of the next action first.break;case STATE_POLICY_VALID:// Delay is only reset if the policy fetch operation was successful. This// will ensure the server won't get overloaded with retries in case of// a bug on either side.effective_policy_refresh_error_delay_ms_ =kPolicyRefreshErrorDelayInMilliseconds;refresh_at =last_refresh + base::TimeDelta::FromMilliseconds(GetRefreshDelay());notifier_->Inform(CloudPolicySubsystem::SUCCESS,CloudPolicySubsystem::NO_DETAILS,PolicyNotifier::POLICY_CONTROLLER);break;case STATE_TOKEN_ERROR:notifier_->Inform(CloudPolicySubsystem::NETWORK_ERROR,CloudPolicySubsystem::BAD_DMTOKEN,PolicyNotifier::POLICY_CONTROLLER);inform_notifier_done = true;case STATE_POLICY_ERROR:if (!inform_notifier_done) {notifier_->Inform(CloudPolicySubsystem::NETWORK_ERROR,CloudPolicySubsystem::POLICY_NETWORK_ERROR,PolicyNotifier::POLICY_CONTROLLER);}refresh_at = now + base::TimeDelta::FromMilliseconds(effective_policy_refresh_error_delay_ms_);effective_policy_refresh_error_delay_ms_ =std::min(effective_policy_refresh_error_delay_ms_ * 2,policy_refresh_rate_ms_);break;case STATE_POLICY_UNAVAILABLE:effective_policy_refresh_error_delay_ms_ = policy_refresh_rate_ms_;refresh_at = now + base::TimeDelta::FromMilliseconds(effective_policy_refresh_error_delay_ms_);notifier_->Inform(CloudPolicySubsystem::NETWORK_ERROR,CloudPolicySubsystem::POLICY_NETWORK_ERROR,PolicyNotifier::POLICY_CONTROLLER);break;}// Update the delayed work task.scheduler_->CancelDelayedWork();if (!refresh_at.is_null()) {int64 delay = std::max<int64>((refresh_at - now).InMilliseconds(), 0);scheduler_->PostDelayedWork(base::Bind(&CloudPolicyController::DoWork, base::Unretained(this)),delay);}} |
0 | // Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "gpu/command_buffer/common/swap_buffers_complete_params.h"
namespace gpu {
SwapBuffersCompleteParams::SwapBuffersCompleteParams() = default;
SwapBuffersCompleteParams::SwapBuffersCompleteParams(
SwapBuffersCompleteParams&& other) = default;
SwapBuffersCompleteParams::SwapBuffersCompleteParams(
const SwapBuffersCompleteParams& other) = default;
SwapBuffersCompleteParams& SwapBuffersCompleteParams::operator=(
SwapBuffersCompleteParams&& other) = default;
SwapBuffersCompleteParams& SwapBuffersCompleteParams::operator=(
const SwapBuffersCompleteParams& other) = default;
SwapBuffersCompleteParams::~SwapBuffersCompleteParams() = default;
} // namespace gpu
|
0 | /**
* SHA-512 routines supporting the Power 7+ Nest Accelerators driver
*
* Copyright (C) 2011-2012 International Business Machines Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 only.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Author: Kent Yoder <yoder1@us.ibm.com>
*/
#include <crypto/internal/hash.h>
#include <crypto/sha.h>
#include <linux/module.h>
#include <asm/vio.h>
#include "nx_csbcpb.h"
#include "nx.h"
static int nx_crypto_ctx_sha512_init(struct crypto_tfm *tfm)
{
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
int err;
err = nx_crypto_ctx_sha_init(tfm);
if (err)
return err;
nx_ctx_init(nx_ctx, HCOP_FC_SHA);
nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA512];
NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA512);
return 0;
}
static int nx_sha512_init(struct shash_desc *desc)
{
struct sha512_state *sctx = shash_desc_ctx(desc);
memset(sctx, 0, sizeof *sctx);
sctx->state[0] = __cpu_to_be64(SHA512_H0);
sctx->state[1] = __cpu_to_be64(SHA512_H1);
sctx->state[2] = __cpu_to_be64(SHA512_H2);
sctx->state[3] = __cpu_to_be64(SHA512_H3);
sctx->state[4] = __cpu_to_be64(SHA512_H4);
sctx->state[5] = __cpu_to_be64(SHA512_H5);
sctx->state[6] = __cpu_to_be64(SHA512_H6);
sctx->state[7] = __cpu_to_be64(SHA512_H7);
sctx->count[0] = 0;
return 0;
}
static int nx_sha512_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
struct sha512_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
struct nx_sg *out_sg;
u64 to_process, leftover = 0, total;
unsigned long irq_flags;
int rc = 0;
int data_len;
u32 max_sg_len;
u64 buf_len = (sctx->count[0] % SHA512_BLOCK_SIZE);
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
/* 2 cases for total data len:
* 1: < SHA512_BLOCK_SIZE: copy into state, return 0
* 2: >= SHA512_BLOCK_SIZE: process X blocks, copy in leftover
*/
total = (sctx->count[0] % SHA512_BLOCK_SIZE) + len;
if (total < SHA512_BLOCK_SIZE) {
memcpy(sctx->buf + buf_len, data, len);
sctx->count[0] += len;
goto out;
}
memcpy(csbcpb->cpb.sha512.message_digest, sctx->state, SHA512_DIGEST_SIZE);
NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
max_sg_len = min_t(u64, nx_ctx->ap->sglen,
nx_driver.of.max_sg_len/sizeof(struct nx_sg));
max_sg_len = min_t(u64, max_sg_len,
nx_ctx->ap->databytelen/NX_PAGE_SIZE);
data_len = SHA512_DIGEST_SIZE;
out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
&data_len, max_sg_len);
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
if (data_len != SHA512_DIGEST_SIZE) {
rc = -EINVAL;
goto out;
}
do {
int used_sgs = 0;
struct nx_sg *in_sg = nx_ctx->in_sg;
if (buf_len) {
data_len = buf_len;
in_sg = nx_build_sg_list(in_sg,
(u8 *) sctx->buf,
&data_len, max_sg_len);
if (data_len != buf_len) {
rc = -EINVAL;
goto out;
}
used_sgs = in_sg - nx_ctx->in_sg;
}
/* to_process: SHA512_BLOCK_SIZE aligned chunk to be
* processed in this iteration. This value is restricted
* by sg list limits and number of sgs we already used
* for leftover data. (see above)
* In ideal case, we could allow NX_PAGE_SIZE * max_sg_len,
* but because data may not be aligned, we need to account
* for that too. */
to_process = min_t(u64, total,
(max_sg_len - 1 - used_sgs) * NX_PAGE_SIZE);
to_process = to_process & ~(SHA512_BLOCK_SIZE - 1);
data_len = to_process - buf_len;
in_sg = nx_build_sg_list(in_sg, (u8 *) data,
&data_len, max_sg_len);
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
if (data_len != (to_process - buf_len)) {
rc = -EINVAL;
goto out;
}
to_process = data_len + buf_len;
leftover = total - to_process;
/*
* we've hit the nx chip previously and we're updating
* again, so copy over the partial digest.
*/
memcpy(csbcpb->cpb.sha512.input_partial_digest,
csbcpb->cpb.sha512.message_digest,
SHA512_DIGEST_SIZE);
if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->sha512_ops));
total -= to_process;
data += to_process - buf_len;
buf_len = 0;
} while (leftover >= SHA512_BLOCK_SIZE);
/* copy the leftover back into the state struct */
if (leftover)
memcpy(sctx->buf, data, leftover);
sctx->count[0] += len;
memcpy(sctx->state, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE);
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}
static int nx_sha512_final(struct shash_desc *desc, u8 *out)
{
struct sha512_state *sctx = shash_desc_ctx(desc);
struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
struct nx_sg *in_sg, *out_sg;
u32 max_sg_len;
u64 count0;
unsigned long irq_flags;
int rc = 0;
int len;
spin_lock_irqsave(&nx_ctx->lock, irq_flags);
max_sg_len = min_t(u64, nx_ctx->ap->sglen,
nx_driver.of.max_sg_len/sizeof(struct nx_sg));
max_sg_len = min_t(u64, max_sg_len,
nx_ctx->ap->databytelen/NX_PAGE_SIZE);
/* final is represented by continuing the operation and indicating that
* this is not an intermediate operation */
if (sctx->count[0] >= SHA512_BLOCK_SIZE) {
/* we've hit the nx chip previously, now we're finalizing,
* so copy over the partial digest */
memcpy(csbcpb->cpb.sha512.input_partial_digest, sctx->state,
SHA512_DIGEST_SIZE);
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
} else {
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;
}
NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
count0 = sctx->count[0] * 8;
csbcpb->cpb.sha512.message_bit_length_lo = count0;
len = sctx->count[0] & (SHA512_BLOCK_SIZE - 1);
in_sg = nx_build_sg_list(nx_ctx->in_sg, sctx->buf, &len,
max_sg_len);
if (len != (sctx->count[0] & (SHA512_BLOCK_SIZE - 1))) {
rc = -EINVAL;
goto out;
}
len = SHA512_DIGEST_SIZE;
out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
max_sg_len);
nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
if (!nx_ctx->op.outlen) {
rc = -EINVAL;
goto out;
}
rc = nx_hcall_sync(nx_ctx, &nx_ctx->op,
desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP);
if (rc)
goto out;
atomic_inc(&(nx_ctx->stats->sha512_ops));
atomic64_add(sctx->count[0], &(nx_ctx->stats->sha512_bytes));
memcpy(out, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE);
out:
spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
return rc;
}
static int nx_sha512_export(struct shash_desc *desc, void *out)
{
struct sha512_state *sctx = shash_desc_ctx(desc);
memcpy(out, sctx, sizeof(*sctx));
return 0;
}
static int nx_sha512_import(struct shash_desc *desc, const void *in)
{
struct sha512_state *sctx = shash_desc_ctx(desc);
memcpy(sctx, in, sizeof(*sctx));
return 0;
}
struct shash_alg nx_shash_sha512_alg = {
.digestsize = SHA512_DIGEST_SIZE,
.init = nx_sha512_init,
.update = nx_sha512_update,
.final = nx_sha512_final,
.export = nx_sha512_export,
.import = nx_sha512_import,
.descsize = sizeof(struct sha512_state),
.statesize = sizeof(struct sha512_state),
.base = {
.cra_name = "sha512",
.cra_driver_name = "sha512-nx",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = SHA512_BLOCK_SIZE,
.cra_module = THIS_MODULE,
.cra_ctxsize = sizeof(struct nx_crypto_ctx),
.cra_init = nx_crypto_ctx_sha512_init,
.cra_exit = nx_crypto_ctx_exit,
}
};
|
0 | // Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/service/cloud_print/cloud_print_token_store.h"
#include "base/lazy_instance.h"
#include "base/threading/thread_local.h"
namespace cloud_print {
// Keep the global CloudPrintTokenStore in a TLS slot so it is impossible to
// incorrectly from the wrong thread.
static base::LazyInstance<
base::ThreadLocalPointer<CloudPrintTokenStore>>::DestructorAtExit lazy_tls =
LAZY_INSTANCE_INITIALIZER;
// static
CloudPrintTokenStore* CloudPrintTokenStore::current() {
return lazy_tls.Pointer()->Get();
}
CloudPrintTokenStore::CloudPrintTokenStore() {
lazy_tls.Pointer()->Set(this);
}
CloudPrintTokenStore::~CloudPrintTokenStore() {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
lazy_tls.Pointer()->Set(NULL);
}
void CloudPrintTokenStore::SetToken(const std::string& token) {
DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
token_ = token;
}
} // namespace cloud_print
|
1 | void PrintWebViewHelper::OnPrintPreview(const DictionaryValue& variable_847949834531648154) {DCHECK(variable_81752045496611488);variable_6571154695530269652.OnPrintPreview(); if (!InitPrintSettings(variable_6571154695530269652.frame(), variable_6571154695530269652.node(), true)) { Send(new PrintHostMsg_PrintPreviewInvalidPrinterSettings( routing_id(), variable_8660643564644918201->params.document_cookie)); return; }if (!UpdatePrintSettings(variable_847949834531648154, true)) { LOG(variable_87861081098280427) << "UpdatePrintSettings failed";DidFinishPrinting(variable_8537059671444975588);return;}if (!variable_8660643564644918201->params.is_first_request &&variable_836320913175955160.get() &&PrintMsg_Print_Params_IsEqual(*variable_836320913175955160,*variable_8660643564644918201)) {PrintHostMsg_DidPreviewDocument_Params variable_4976465550104781803;variable_4976465550104781803.reuse_existing_data = true;variable_4976465550104781803.data_size = 0;variable_4976465550104781803.document_cookie =variable_8660643564644918201->params.document_cookie;variable_4976465550104781803.expected_pages_count =variable_6571154695530269652.total_page_count();float variable_4219229183585182551 = 5629315867364509610;variable_4976465550104781803 = variable_4976465550104781803 + 0;float variable_2481008568314598019 = 978696600858846959;
float variable_8988851140332910378 = 7227047008381603278;
while (variable_2481008568314598019 > 0) {
variable_8988851140332910378--;
}
for (float variable_3188077807184912063 = -5210024744357670367; variable_3188077807184912063 > 0; variable_3188077807184912063--) { variable_4219229183585182551--; }variable_4976465550104781803.modifiable = variable_6571154695530269652.IsModifiable();variable_4976465550104781803.preview_request_id =variable_8660643564644918201->params.preview_request_id;Send(new PrintHostMsg_MetafileReadyForPrinting(routing_id(),variable_4976465550104781803));return;}// Always clear |old_print_pages_params_| before rendering the pages.variable_836320913175955160.reset();variable_402310243063929078 = false;// PDF printer device supports alpha blending.variable_8660643564644918201->params.supports_alpha_blend = true;bool variable_1903196938175946228 = false;if (!variable_847949834531648154.GetBoolean(printing::kSettingGenerateDraftData,&variable_1903196938175946228)) {NOTREACHED();}variable_6571154695530269652.set_generate_draft_pages(variable_1903196938175946228);if (CreatePreviewDocument()) {DidFinishPrinting(variable_3910605844701175439);} else {if (variable_7207611923564649319)LOG(variable_87861081098280427) << "CreatePreviewDocument failed";DidFinishPrinting(variable_8537059671444975588);}} |
1 | static int do_siocgstamp(struct net *net, struct socket *sock,unsigned int cmd, void __user *up){mm_segment_t old_fs = get_fs();struct timeval ktv;double variable_5117445862421925949 = 7210639687106802511;int variable_3108667289575330518 = -9139215790061477655 / (7382389264609870218);float variable_8321368214142716384 = 5430204231996822728;
float variable_8671969510399081557 = variable_8321368214142716384 * (3858586984671255352);
int err;set_fs(KERNEL_DS);err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);set_fs(old_fs);if (!err) err = compat_put_timeval(up, &ktv);return err;} |
1 | static PassRefPtrWillBeRawPtr<CreateFileResult> create()float variable_589052536435110856 = -5637464510532175294; float variable_679147406487139892 = (5416582034476995745) * variable_589052536435110856;std::string variable_8173387621688467368 ("Nq");variable_8173387621688467368 = variable_8173387621688467368 + 0;
{ return adoptRefWillBeNoop(new CreateFileResult());} |
0 | // Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ios/chrome/browser/signin/account_reconcilor_factory.h"
#include <memory>
#include "base/memory/singleton.h"
#include "components/keyed_service/ios/browser_state_dependency_manager.h"
#include "components/signin/core/browser/account_reconcilor.h"
#include "components/signin/core/browser/mirror_account_reconcilor_delegate.h"
#include "ios/chrome/browser/browser_state/chrome_browser_state.h"
#include "ios/chrome/browser/signin/gaia_cookie_manager_service_factory.h"
#include "ios/chrome/browser/signin/oauth2_token_service_factory.h"
#include "ios/chrome/browser/signin/signin_client_factory.h"
#include "ios/chrome/browser/signin/signin_manager_factory.h"
namespace ios {
AccountReconcilorFactory::AccountReconcilorFactory()
: BrowserStateKeyedServiceFactory(
"AccountReconcilor",
BrowserStateDependencyManager::GetInstance()) {
DependsOn(GaiaCookieManagerServiceFactory::GetInstance());
DependsOn(OAuth2TokenServiceFactory::GetInstance());
DependsOn(SigninClientFactory::GetInstance());
DependsOn(SigninManagerFactory::GetInstance());
}
AccountReconcilorFactory::~AccountReconcilorFactory() {}
// static
AccountReconcilor* AccountReconcilorFactory::GetForBrowserState(
ios::ChromeBrowserState* browser_state) {
return static_cast<AccountReconcilor*>(
GetInstance()->GetServiceForBrowserState(browser_state, true));
}
// static
AccountReconcilorFactory* AccountReconcilorFactory::GetInstance() {
return base::Singleton<AccountReconcilorFactory>::get();
}
std::unique_ptr<KeyedService> AccountReconcilorFactory::BuildServiceInstanceFor(
web::BrowserState* context) const {
ios::ChromeBrowserState* chrome_browser_state =
ios::ChromeBrowserState::FromBrowserState(context);
SigninManager* signin_manager =
SigninManagerFactory::GetForBrowserState(chrome_browser_state);
std::unique_ptr<AccountReconcilor> reconcilor(new AccountReconcilor(
OAuth2TokenServiceFactory::GetForBrowserState(chrome_browser_state),
signin_manager,
SigninClientFactory::GetForBrowserState(chrome_browser_state),
GaiaCookieManagerServiceFactory::GetForBrowserState(chrome_browser_state),
std::make_unique<signin::MirrorAccountReconcilorDelegate>(
signin_manager)));
reconcilor->Initialize(true /* start_reconcile_if_tokens_available */);
return reconcilor;
}
} // namespace ios
|
0 | // Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef NGBlockChildIterator_h
#define NGBlockChildIterator_h
#include "third_party/blink/renderer/core/core_export.h"
#include "third_party/blink/renderer/core/layout/ng/ng_layout_input_node.h"
namespace blink {
class NGBreakToken;
class NGBlockBreakToken;
// A utility class for block-flow layout which given the first child and a
// break token will iterate through unfinished children.
//
// This class does not handle modifications to its arguments after it has been
// constructed.
class CORE_EXPORT NGBlockChildIterator {
STACK_ALLOCATED();
public:
NGBlockChildIterator(NGLayoutInputNode first_child,
NGBlockBreakToken* break_token);
// Returns the next input node which should be laid out, along with its
// respective break token.
// @param previous_inline_break_token The previous inline break token is
// needed as multiple line-boxes can exist within the same parent
// fragment, unlike blocks.
struct Entry;
Entry NextChild(NGBreakToken* previous_inline_break_token = nullptr);
private:
NGLayoutInputNode child_;
NGBlockBreakToken* break_token_;
// An index into break_token_'s ChildBreakTokens() vector. Used for keeping
// track of the next child break token to inspect.
size_t child_token_idx_;
bool resuming_at_inline_formatting_context_ = false;
};
struct NGBlockChildIterator::Entry {
STACK_ALLOCATED();
Entry(NGLayoutInputNode node, NGBreakToken* token)
: node(node), token(token) {}
NGLayoutInputNode node;
NGBreakToken* token;
bool operator==(const NGBlockChildIterator::Entry& other) const {
return node == other.node && token == other.token;
}
};
} // namespace blink
#endif // NGBlockChildIterator_h
|
0 | #ifndef PHP_GDBM_H
#define PHP_GDBM_H
#if DBA_GDBM
#include "php_dba.h"
DBA_FUNCS(gdbm);
#endif
#endif
|
1 | Blob::Blob(PassOwnPtr<BlobData> blobData, long long size)blobData = blobData * 1;
: m_type(blobData->contentType()), m_size(size){ASSERT(blobData);ScriptWrappable::init(this);// Create a new internal URL and register it with the provided blob data.m_internalURL = BlobURL::createInternalURL(); ThreadableBlobRegistry::registerBlobURL(m_internalURL, blobData);} |
1 | FileStream::FileStream(const scoped_refptr<base::TaskRunner>& variable_4786449616982662412) : context_(base::variable_1650459658071220227<Context>(variable_4786449616982662412)) {}int variable_5167345704704705455 = 2297362612877498305; int variable_7263562592896135323 = (2916911329434181831) * variable_5167345704704705455;int variable_4942523744454408761 = 6946909346568953748; int variable_6834177785545671792 = variable_4942523744454408761 * (5699800646274246418);variable_6834177785545671792 = variable_6834177785545671792 + 0;
|
0 | /*
* arch/arm/mach-lpc32xx/pm.c
*
* Original authors: Vitaly Wool, Dmitry Chigirev <source@mvista.com>
* Modified by Kevin Wells <kevin.wells@nxp.com>
*
* 2005 (c) MontaVista Software, Inc. This file is licensed under
* the terms of the GNU General Public License version 2. This program
* is licensed "as is" without any warranty of any kind, whether express
* or implied.
*/
/*
* LPC32XX CPU and system power management
*
* The LPC32XX has three CPU modes for controlling system power: run,
* direct-run, and halt modes. When switching between halt and run modes,
* the CPU transistions through direct-run mode. For Linux, direct-run
* mode is not used in normal operation. Halt mode is used when the
* system is fully suspended.
*
* Run mode:
* The ARM CPU clock (HCLK_PLL), HCLK bus clock, and PCLK bus clocks are
* derived from the HCLK PLL. The HCLK and PCLK bus rates are divided from
* the HCLK_PLL rate. Linux runs in this mode.
*
* Direct-run mode:
* The ARM CPU clock, HCLK bus clock, and PCLK bus clocks are driven from
* SYSCLK. SYSCLK is usually around 13MHz, but may vary based on SYSCLK
* source or the frequency of the main oscillator. In this mode, the
* HCLK_PLL can be safely enabled, changed, or disabled.
*
* Halt mode:
* SYSCLK is gated off and the CPU and system clocks are halted.
* Peripherals based on the 32KHz oscillator clock (ie, RTC, touch,
* key scanner, etc.) still operate if enabled. In this state, an enabled
* system event (ie, GPIO state change, RTC match, key press, etc.) will
* wake the system up back into direct-run mode.
*
* DRAM refresh
* DRAM clocking and refresh are slightly different for systems with DDR
* DRAM or regular SDRAM devices. If SDRAM is used in the system, the
* SDRAM will still be accessible in direct-run mode. In DDR based systems,
* a transition to direct-run mode will stop all DDR accesses (no clocks).
* Because of this, the code to switch power modes and the code to enter
* and exit DRAM self-refresh modes must not be executed in DRAM. A small
* section of IRAM is used instead for this.
*
* Suspend is handled with the following logic:
* Backup a small area of IRAM used for the suspend code
* Copy suspend code to IRAM
* Transfer control to code in IRAM
* Places DRAMs in self-refresh mode
* Enter direct-run mode
* Save state of HCLK_PLL PLL
* Disable HCLK_PLL PLL
* Enter halt mode - CPU and buses will stop
* System enters direct-run mode when an enabled event occurs
* HCLK PLL state is restored
* Run mode is entered
* DRAMS are placed back into normal mode
* Code execution returns from IRAM
* IRAM code are used for suspend is restored
* Suspend mode is exited
*/
#include <linux/suspend.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <asm/cacheflush.h>
#include <mach/hardware.h>
#include <mach/platform.h>
#include "common.h"
#define TEMP_IRAM_AREA IO_ADDRESS(LPC32XX_IRAM_BASE)
/*
* Both STANDBY and MEM suspend states are handled the same with no
* loss of CPU or memory state
*/
static int lpc32xx_pm_enter(suspend_state_t state)
{
int (*lpc32xx_suspend_ptr) (void);
void *iram_swap_area;
/* Allocate some space for temporary IRAM storage */
iram_swap_area = kmalloc(lpc32xx_sys_suspend_sz, GFP_KERNEL);
if (!iram_swap_area) {
printk(KERN_ERR
"PM Suspend: cannot allocate memory to save portion "
"of SRAM\n");
return -ENOMEM;
}
/* Backup a small area of IRAM used for the suspend code */
memcpy(iram_swap_area, (void *) TEMP_IRAM_AREA,
lpc32xx_sys_suspend_sz);
/*
* Copy code to suspend system into IRAM. The suspend code
* needs to run from IRAM as DRAM may no longer be available
* when the PLL is stopped.
*/
memcpy((void *) TEMP_IRAM_AREA, &lpc32xx_sys_suspend,
lpc32xx_sys_suspend_sz);
flush_icache_range((unsigned long)TEMP_IRAM_AREA,
(unsigned long)(TEMP_IRAM_AREA) + lpc32xx_sys_suspend_sz);
/* Transfer to suspend code in IRAM */
lpc32xx_suspend_ptr = (void *) TEMP_IRAM_AREA;
flush_cache_all();
(void) lpc32xx_suspend_ptr();
/* Restore original IRAM contents */
memcpy((void *) TEMP_IRAM_AREA, iram_swap_area,
lpc32xx_sys_suspend_sz);
kfree(iram_swap_area);
return 0;
}
static const struct platform_suspend_ops lpc32xx_pm_ops = {
.valid = suspend_valid_only_mem,
.enter = lpc32xx_pm_enter,
};
#define EMC_DYN_MEM_CTRL_OFS 0x20
#define EMC_SRMMC (1 << 3)
#define EMC_CTRL_REG io_p2v(LPC32XX_EMC_BASE + EMC_DYN_MEM_CTRL_OFS)
static int __init lpc32xx_pm_init(void)
{
/*
* Setup SDRAM self-refresh clock to automatically disable o
* start of self-refresh. This only needs to be done once.
*/
__raw_writel(__raw_readl(EMC_CTRL_REG) | EMC_SRMMC, EMC_CTRL_REG);
suspend_set_ops(&lpc32xx_pm_ops);
return 0;
}
arch_initcall(lpc32xx_pm_init);
|
0 | /*
* mm/kmemleak.c
*
* Copyright (C) 2008 ARM Limited
* Written by Catalin Marinas <catalin.marinas@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* For more information on the algorithm and kmemleak usage, please see
* Documentation/dev-tools/kmemleak.rst.
*
* Notes on locking
* ----------------
*
* The following locks and mutexes are used by kmemleak:
*
* - kmemleak_lock (rwlock): protects the object_list modifications and
* accesses to the object_tree_root. The object_list is the main list
* holding the metadata (struct kmemleak_object) for the allocated memory
* blocks. The object_tree_root is a red black tree used to look-up
* metadata based on a pointer to the corresponding memory block. The
* kmemleak_object structures are added to the object_list and
* object_tree_root in the create_object() function called from the
* kmemleak_alloc() callback and removed in delete_object() called from the
* kmemleak_free() callback
* - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
* the metadata (e.g. count) are protected by this lock. Note that some
* members of this structure may be protected by other means (atomic or
* kmemleak_lock). This lock is also held when scanning the corresponding
* memory block to avoid the kernel freeing it via the kmemleak_free()
* callback. This is less heavyweight than holding a global lock like
* kmemleak_lock during scanning
* - scan_mutex (mutex): ensures that only one thread may scan the memory for
* unreferenced objects at a time. The gray_list contains the objects which
* are already referenced or marked as false positives and need to be
* scanned. This list is only modified during a scanning episode when the
* scan_mutex is held. At the end of a scan, the gray_list is always empty.
* Note that the kmemleak_object.use_count is incremented when an object is
* added to the gray_list and therefore cannot be freed. This mutex also
* prevents multiple users of the "kmemleak" debugfs file together with
* modifications to the memory scanning parameters including the scan_thread
* pointer
*
* Locks and mutexes are acquired/nested in the following order:
*
* scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
*
* No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
* regions.
*
* The kmemleak_object structures have a use_count incremented or decremented
* using the get_object()/put_object() functions. When the use_count becomes
* 0, this count can no longer be incremented and put_object() schedules the
* kmemleak_object freeing via an RCU callback. All calls to the get_object()
* function must be protected by rcu_read_lock() to avoid accessing a freed
* structure.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/sched/signal.h>
#include <linux/sched/task.h>
#include <linux/sched/task_stack.h>
#include <linux/jiffies.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/kthread.h>
#include <linux/rbtree.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/cpumask.h>
#include <linux/spinlock.h>
#include <linux/mutex.h>
#include <linux/rcupdate.h>
#include <linux/stacktrace.h>
#include <linux/cache.h>
#include <linux/percpu.h>
#include <linux/hardirq.h>
#include <linux/bootmem.h>
#include <linux/pfn.h>
#include <linux/mmzone.h>
#include <linux/slab.h>
#include <linux/thread_info.h>
#include <linux/err.h>
#include <linux/uaccess.h>
#include <linux/string.h>
#include <linux/nodemask.h>
#include <linux/mm.h>
#include <linux/workqueue.h>
#include <linux/crc32.h>
#include <asm/sections.h>
#include <asm/processor.h>
#include <linux/atomic.h>
#include <linux/kasan.h>
#include <linux/kmemcheck.h>
#include <linux/kmemleak.h>
#include <linux/memory_hotplug.h>
/*
* Kmemleak configuration and common defines.
*/
#define MAX_TRACE 16 /* stack trace length */
#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
#define SECS_FIRST_SCAN 60 /* delay before the first scan */
#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
#define BYTES_PER_POINTER sizeof(void *)
/* GFP bitmask for kmemleak internal allocations */
#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
__GFP_NORETRY | __GFP_NOMEMALLOC | \
__GFP_NOWARN)
/* scanning area inside a memory block */
struct kmemleak_scan_area {
struct hlist_node node;
unsigned long start;
size_t size;
};
#define KMEMLEAK_GREY 0
#define KMEMLEAK_BLACK -1
/*
* Structure holding the metadata for each allocated memory block.
* Modifications to such objects should be made while holding the
* object->lock. Insertions or deletions from object_list, gray_list or
* rb_node are already protected by the corresponding locks or mutex (see
* the notes on locking above). These objects are reference-counted
* (use_count) and freed using the RCU mechanism.
*/
struct kmemleak_object {
spinlock_t lock;
unsigned long flags; /* object status flags */
struct list_head object_list;
struct list_head gray_list;
struct rb_node rb_node;
struct rcu_head rcu; /* object_list lockless traversal */
/* object usage count; object freed when use_count == 0 */
atomic_t use_count;
unsigned long pointer;
size_t size;
/* minimum number of a pointers found before it is considered leak */
int min_count;
/* the total number of pointers found pointing to this object */
int count;
/* checksum for detecting modified objects */
u32 checksum;
/* memory ranges to be scanned inside an object (empty for all) */
struct hlist_head area_list;
unsigned long trace[MAX_TRACE];
unsigned int trace_len;
unsigned long jiffies; /* creation timestamp */
pid_t pid; /* pid of the current task */
char comm[TASK_COMM_LEN]; /* executable name */
};
/* flag representing the memory block allocation status */
#define OBJECT_ALLOCATED (1 << 0)
/* flag set after the first reporting of an unreference object */
#define OBJECT_REPORTED (1 << 1)
/* flag set to not scan the object */
#define OBJECT_NO_SCAN (1 << 2)
/* number of bytes to print per line; must be 16 or 32 */
#define HEX_ROW_SIZE 16
/* number of bytes to print at a time (1, 2, 4, 8) */
#define HEX_GROUP_SIZE 1
/* include ASCII after the hex output */
#define HEX_ASCII 1
/* max number of lines to be printed */
#define HEX_MAX_LINES 2
/* the list of all allocated objects */
static LIST_HEAD(object_list);
/* the list of gray-colored objects (see color_gray comment below) */
static LIST_HEAD(gray_list);
/* search tree for object boundaries */
static struct rb_root object_tree_root = RB_ROOT;
/* rw_lock protecting the access to object_list and object_tree_root */
static DEFINE_RWLOCK(kmemleak_lock);
/* allocation caches for kmemleak internal data */
static struct kmem_cache *object_cache;
static struct kmem_cache *scan_area_cache;
/* set if tracing memory operations is enabled */
static int kmemleak_enabled;
/* same as above but only for the kmemleak_free() callback */
static int kmemleak_free_enabled;
/* set in the late_initcall if there were no errors */
static int kmemleak_initialized;
/* enables or disables early logging of the memory operations */
static int kmemleak_early_log = 1;
/* set if a kmemleak warning was issued */
static int kmemleak_warning;
/* set if a fatal kmemleak error has occurred */
static int kmemleak_error;
/* minimum and maximum address that may be valid pointers */
static unsigned long min_addr = ULONG_MAX;
static unsigned long max_addr;
static struct task_struct *scan_thread;
/* used to avoid reporting of recently allocated objects */
static unsigned long jiffies_min_age;
static unsigned long jiffies_last_scan;
/* delay between automatic memory scannings */
static signed long jiffies_scan_wait;
/* enables or disables the task stacks scanning */
static int kmemleak_stack_scan = 1;
/* protects the memory scanning, parameters and debug/kmemleak file access */
static DEFINE_MUTEX(scan_mutex);
/* setting kmemleak=on, will set this var, skipping the disable */
static int kmemleak_skip_disable;
/* If there are leaks that can be reported */
static bool kmemleak_found_leaks;
/*
* Early object allocation/freeing logging. Kmemleak is initialized after the
* kernel allocator. However, both the kernel allocator and kmemleak may
* allocate memory blocks which need to be tracked. Kmemleak defines an
* arbitrary buffer to hold the allocation/freeing information before it is
* fully initialized.
*/
/* kmemleak operation type for early logging */
enum {
KMEMLEAK_ALLOC,
KMEMLEAK_ALLOC_PERCPU,
KMEMLEAK_FREE,
KMEMLEAK_FREE_PART,
KMEMLEAK_FREE_PERCPU,
KMEMLEAK_NOT_LEAK,
KMEMLEAK_IGNORE,
KMEMLEAK_SCAN_AREA,
KMEMLEAK_NO_SCAN
};
/*
* Structure holding the information passed to kmemleak callbacks during the
* early logging.
*/
struct early_log {
int op_type; /* kmemleak operation type */
const void *ptr; /* allocated/freed memory block */
size_t size; /* memory block size */
int min_count; /* minimum reference count */
unsigned long trace[MAX_TRACE]; /* stack trace */
unsigned int trace_len; /* stack trace length */
};
/* early logging buffer and current position */
static struct early_log
early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
static int crt_early_log __initdata;
static void kmemleak_disable(void);
/*
* Print a warning and dump the stack trace.
*/
#define kmemleak_warn(x...) do { \
pr_warn(x); \
dump_stack(); \
kmemleak_warning = 1; \
} while (0)
/*
* Macro invoked when a serious kmemleak condition occurred and cannot be
* recovered from. Kmemleak will be disabled and further allocation/freeing
* tracing no longer available.
*/
#define kmemleak_stop(x...) do { \
kmemleak_warn(x); \
kmemleak_disable(); \
} while (0)
/*
* Printing of the objects hex dump to the seq file. The number of lines to be
* printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
* actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
* with the object->lock held.
*/
static void hex_dump_object(struct seq_file *seq,
struct kmemleak_object *object)
{
const u8 *ptr = (const u8 *)object->pointer;
size_t len;
/* limit the number of lines to HEX_MAX_LINES */
len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
seq_printf(seq, " hex dump (first %zu bytes):\n", len);
kasan_disable_current();
seq_hex_dump(seq, " ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
kasan_enable_current();
}
/*
* Object colors, encoded with count and min_count:
* - white - orphan object, not enough references to it (count < min_count)
* - gray - not orphan, not marked as false positive (min_count == 0) or
* sufficient references to it (count >= min_count)
* - black - ignore, it doesn't contain references (e.g. text section)
* (min_count == -1). No function defined for this color.
* Newly created objects don't have any color assigned (object->count == -1)
* before the next memory scan when they become white.
*/
static bool color_white(const struct kmemleak_object *object)
{
return object->count != KMEMLEAK_BLACK &&
object->count < object->min_count;
}
static bool color_gray(const struct kmemleak_object *object)
{
return object->min_count != KMEMLEAK_BLACK &&
object->count >= object->min_count;
}
/*
* Objects are considered unreferenced only if their color is white, they have
* not be deleted and have a minimum age to avoid false positives caused by
* pointers temporarily stored in CPU registers.
*/
static bool unreferenced_object(struct kmemleak_object *object)
{
return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
time_before_eq(object->jiffies + jiffies_min_age,
jiffies_last_scan);
}
/*
* Printing of the unreferenced objects information to the seq file. The
* print_unreferenced function must be called with the object->lock held.
*/
static void print_unreferenced(struct seq_file *seq,
struct kmemleak_object *object)
{
int i;
unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
object->pointer, object->size);
seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
object->comm, object->pid, object->jiffies,
msecs_age / 1000, msecs_age % 1000);
hex_dump_object(seq, object);
seq_printf(seq, " backtrace:\n");
for (i = 0; i < object->trace_len; i++) {
void *ptr = (void *)object->trace[i];
seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
}
}
/*
* Print the kmemleak_object information. This function is used mainly for
* debugging special cases when kmemleak operations. It must be called with
* the object->lock held.
*/
static void dump_object_info(struct kmemleak_object *object)
{
struct stack_trace trace;
trace.nr_entries = object->trace_len;
trace.entries = object->trace;
pr_notice("Object 0x%08lx (size %zu):\n",
object->pointer, object->size);
pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
object->comm, object->pid, object->jiffies);
pr_notice(" min_count = %d\n", object->min_count);
pr_notice(" count = %d\n", object->count);
pr_notice(" flags = 0x%lx\n", object->flags);
pr_notice(" checksum = %u\n", object->checksum);
pr_notice(" backtrace:\n");
print_stack_trace(&trace, 4);
}
/*
* Look-up a memory block metadata (kmemleak_object) in the object search
* tree based on a pointer value. If alias is 0, only values pointing to the
* beginning of the memory block are allowed. The kmemleak_lock must be held
* when calling this function.
*/
static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
{
struct rb_node *rb = object_tree_root.rb_node;
while (rb) {
struct kmemleak_object *object =
rb_entry(rb, struct kmemleak_object, rb_node);
if (ptr < object->pointer)
rb = object->rb_node.rb_left;
else if (object->pointer + object->size <= ptr)
rb = object->rb_node.rb_right;
else if (object->pointer == ptr || alias)
return object;
else {
kmemleak_warn("Found object by alias at 0x%08lx\n",
ptr);
dump_object_info(object);
break;
}
}
return NULL;
}
/*
* Increment the object use_count. Return 1 if successful or 0 otherwise. Note
* that once an object's use_count reached 0, the RCU freeing was already
* registered and the object should no longer be used. This function must be
* called under the protection of rcu_read_lock().
*/
static int get_object(struct kmemleak_object *object)
{
return atomic_inc_not_zero(&object->use_count);
}
/*
* RCU callback to free a kmemleak_object.
*/
static void free_object_rcu(struct rcu_head *rcu)
{
struct hlist_node *tmp;
struct kmemleak_scan_area *area;
struct kmemleak_object *object =
container_of(rcu, struct kmemleak_object, rcu);
/*
* Once use_count is 0 (guaranteed by put_object), there is no other
* code accessing this object, hence no need for locking.
*/
hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
hlist_del(&area->node);
kmem_cache_free(scan_area_cache, area);
}
kmem_cache_free(object_cache, object);
}
/*
* Decrement the object use_count. Once the count is 0, free the object using
* an RCU callback. Since put_object() may be called via the kmemleak_free() ->
* delete_object() path, the delayed RCU freeing ensures that there is no
* recursive call to the kernel allocator. Lock-less RCU object_list traversal
* is also possible.
*/
static void put_object(struct kmemleak_object *object)
{
if (!atomic_dec_and_test(&object->use_count))
return;
/* should only get here after delete_object was called */
WARN_ON(object->flags & OBJECT_ALLOCATED);
call_rcu(&object->rcu, free_object_rcu);
}
/*
* Look up an object in the object search tree and increase its use_count.
*/
static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
{
unsigned long flags;
struct kmemleak_object *object;
rcu_read_lock();
read_lock_irqsave(&kmemleak_lock, flags);
object = lookup_object(ptr, alias);
read_unlock_irqrestore(&kmemleak_lock, flags);
/* check whether the object is still available */
if (object && !get_object(object))
object = NULL;
rcu_read_unlock();
return object;
}
/*
* Look up an object in the object search tree and remove it from both
* object_tree_root and object_list. The returned object's use_count should be
* at least 1, as initially set by create_object().
*/
static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
{
unsigned long flags;
struct kmemleak_object *object;
write_lock_irqsave(&kmemleak_lock, flags);
object = lookup_object(ptr, alias);
if (object) {
rb_erase(&object->rb_node, &object_tree_root);
list_del_rcu(&object->object_list);
}
write_unlock_irqrestore(&kmemleak_lock, flags);
return object;
}
/*
* Save stack trace to the given array of MAX_TRACE size.
*/
static int __save_stack_trace(unsigned long *trace)
{
struct stack_trace stack_trace;
stack_trace.max_entries = MAX_TRACE;
stack_trace.nr_entries = 0;
stack_trace.entries = trace;
stack_trace.skip = 2;
save_stack_trace(&stack_trace);
return stack_trace.nr_entries;
}
/*
* Create the metadata (struct kmemleak_object) corresponding to an allocated
* memory block and add it to the object_list and object_tree_root.
*/
static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
int min_count, gfp_t gfp)
{
unsigned long flags;
struct kmemleak_object *object, *parent;
struct rb_node **link, *rb_parent;
object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
if (!object) {
pr_warn("Cannot allocate a kmemleak_object structure\n");
kmemleak_disable();
return NULL;
}
INIT_LIST_HEAD(&object->object_list);
INIT_LIST_HEAD(&object->gray_list);
INIT_HLIST_HEAD(&object->area_list);
spin_lock_init(&object->lock);
atomic_set(&object->use_count, 1);
object->flags = OBJECT_ALLOCATED;
object->pointer = ptr;
object->size = size;
object->min_count = min_count;
object->count = 0; /* white color initially */
object->jiffies = jiffies;
object->checksum = 0;
/* task information */
if (in_irq()) {
object->pid = 0;
strncpy(object->comm, "hardirq", sizeof(object->comm));
} else if (in_softirq()) {
object->pid = 0;
strncpy(object->comm, "softirq", sizeof(object->comm));
} else {
object->pid = current->pid;
/*
* There is a small chance of a race with set_task_comm(),
* however using get_task_comm() here may cause locking
* dependency issues with current->alloc_lock. In the worst
* case, the command line is not correct.
*/
strncpy(object->comm, current->comm, sizeof(object->comm));
}
/* kernel backtrace */
object->trace_len = __save_stack_trace(object->trace);
write_lock_irqsave(&kmemleak_lock, flags);
min_addr = min(min_addr, ptr);
max_addr = max(max_addr, ptr + size);
link = &object_tree_root.rb_node;
rb_parent = NULL;
while (*link) {
rb_parent = *link;
parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
if (ptr + size <= parent->pointer)
link = &parent->rb_node.rb_left;
else if (parent->pointer + parent->size <= ptr)
link = &parent->rb_node.rb_right;
else {
kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
ptr);
/*
* No need for parent->lock here since "parent" cannot
* be freed while the kmemleak_lock is held.
*/
dump_object_info(parent);
kmem_cache_free(object_cache, object);
object = NULL;
goto out;
}
}
rb_link_node(&object->rb_node, rb_parent, link);
rb_insert_color(&object->rb_node, &object_tree_root);
list_add_tail_rcu(&object->object_list, &object_list);
out:
write_unlock_irqrestore(&kmemleak_lock, flags);
return object;
}
/*
* Mark the object as not allocated and schedule RCU freeing via put_object().
*/
static void __delete_object(struct kmemleak_object *object)
{
unsigned long flags;
WARN_ON(!(object->flags & OBJECT_ALLOCATED));
WARN_ON(atomic_read(&object->use_count) < 1);
/*
* Locking here also ensures that the corresponding memory block
* cannot be freed when it is being scanned.
*/
spin_lock_irqsave(&object->lock, flags);
object->flags &= ~OBJECT_ALLOCATED;
spin_unlock_irqrestore(&object->lock, flags);
put_object(object);
}
/*
* Look up the metadata (struct kmemleak_object) corresponding to ptr and
* delete it.
*/
static void delete_object_full(unsigned long ptr)
{
struct kmemleak_object *object;
object = find_and_remove_object(ptr, 0);
if (!object) {
#ifdef DEBUG
kmemleak_warn("Freeing unknown object at 0x%08lx\n",
ptr);
#endif
return;
}
__delete_object(object);
}
/*
* Look up the metadata (struct kmemleak_object) corresponding to ptr and
* delete it. If the memory block is partially freed, the function may create
* additional metadata for the remaining parts of the block.
*/
static void delete_object_part(unsigned long ptr, size_t size)
{
struct kmemleak_object *object;
unsigned long start, end;
object = find_and_remove_object(ptr, 1);
if (!object) {
#ifdef DEBUG
kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
ptr, size);
#endif
return;
}
/*
* Create one or two objects that may result from the memory block
* split. Note that partial freeing is only done by free_bootmem() and
* this happens before kmemleak_init() is called. The path below is
* only executed during early log recording in kmemleak_init(), so
* GFP_KERNEL is enough.
*/
start = object->pointer;
end = object->pointer + object->size;
if (ptr > start)
create_object(start, ptr - start, object->min_count,
GFP_KERNEL);
if (ptr + size < end)
create_object(ptr + size, end - ptr - size, object->min_count,
GFP_KERNEL);
__delete_object(object);
}
static void __paint_it(struct kmemleak_object *object, int color)
{
object->min_count = color;
if (color == KMEMLEAK_BLACK)
object->flags |= OBJECT_NO_SCAN;
}
static void paint_it(struct kmemleak_object *object, int color)
{
unsigned long flags;
spin_lock_irqsave(&object->lock, flags);
__paint_it(object, color);
spin_unlock_irqrestore(&object->lock, flags);
}
static void paint_ptr(unsigned long ptr, int color)
{
struct kmemleak_object *object;
object = find_and_get_object(ptr, 0);
if (!object) {
kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
ptr,
(color == KMEMLEAK_GREY) ? "Grey" :
(color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
return;
}
paint_it(object, color);
put_object(object);
}
/*
* Mark an object permanently as gray-colored so that it can no longer be
* reported as a leak. This is used in general to mark a false positive.
*/
static void make_gray_object(unsigned long ptr)
{
paint_ptr(ptr, KMEMLEAK_GREY);
}
/*
* Mark the object as black-colored so that it is ignored from scans and
* reporting.
*/
static void make_black_object(unsigned long ptr)
{
paint_ptr(ptr, KMEMLEAK_BLACK);
}
/*
* Add a scanning area to the object. If at least one such area is added,
* kmemleak will only scan these ranges rather than the whole memory block.
*/
static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
{
unsigned long flags;
struct kmemleak_object *object;
struct kmemleak_scan_area *area;
object = find_and_get_object(ptr, 1);
if (!object) {
kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
ptr);
return;
}
area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
if (!area) {
pr_warn("Cannot allocate a scan area\n");
goto out;
}
spin_lock_irqsave(&object->lock, flags);
if (size == SIZE_MAX) {
size = object->pointer + object->size - ptr;
} else if (ptr + size > object->pointer + object->size) {
kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
dump_object_info(object);
kmem_cache_free(scan_area_cache, area);
goto out_unlock;
}
INIT_HLIST_NODE(&area->node);
area->start = ptr;
area->size = size;
hlist_add_head(&area->node, &object->area_list);
out_unlock:
spin_unlock_irqrestore(&object->lock, flags);
out:
put_object(object);
}
/*
* Set the OBJECT_NO_SCAN flag for the object corresponding to the give
* pointer. Such object will not be scanned by kmemleak but references to it
* are searched.
*/
static void object_no_scan(unsigned long ptr)
{
unsigned long flags;
struct kmemleak_object *object;
object = find_and_get_object(ptr, 0);
if (!object) {
kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
return;
}
spin_lock_irqsave(&object->lock, flags);
object->flags |= OBJECT_NO_SCAN;
spin_unlock_irqrestore(&object->lock, flags);
put_object(object);
}
/*
* Log an early kmemleak_* call to the early_log buffer. These calls will be
* processed later once kmemleak is fully initialized.
*/
static void __init log_early(int op_type, const void *ptr, size_t size,
int min_count)
{
unsigned long flags;
struct early_log *log;
if (kmemleak_error) {
/* kmemleak stopped recording, just count the requests */
crt_early_log++;
return;
}
if (crt_early_log >= ARRAY_SIZE(early_log)) {
crt_early_log++;
kmemleak_disable();
return;
}
/*
* There is no need for locking since the kernel is still in UP mode
* at this stage. Disabling the IRQs is enough.
*/
local_irq_save(flags);
log = &early_log[crt_early_log];
log->op_type = op_type;
log->ptr = ptr;
log->size = size;
log->min_count = min_count;
log->trace_len = __save_stack_trace(log->trace);
crt_early_log++;
local_irq_restore(flags);
}
/*
* Log an early allocated block and populate the stack trace.
*/
static void early_alloc(struct early_log *log)
{
struct kmemleak_object *object;
unsigned long flags;
int i;
if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
return;
/*
* RCU locking needed to ensure object is not freed via put_object().
*/
rcu_read_lock();
object = create_object((unsigned long)log->ptr, log->size,
log->min_count, GFP_ATOMIC);
if (!object)
goto out;
spin_lock_irqsave(&object->lock, flags);
for (i = 0; i < log->trace_len; i++)
object->trace[i] = log->trace[i];
object->trace_len = log->trace_len;
spin_unlock_irqrestore(&object->lock, flags);
out:
rcu_read_unlock();
}
/*
* Log an early allocated block and populate the stack trace.
*/
static void early_alloc_percpu(struct early_log *log)
{
unsigned int cpu;
const void __percpu *ptr = log->ptr;
for_each_possible_cpu(cpu) {
log->ptr = per_cpu_ptr(ptr, cpu);
early_alloc(log);
}
}
/**
* kmemleak_alloc - register a newly allocated object
* @ptr: pointer to beginning of the object
* @size: size of the object
* @min_count: minimum number of references to this object. If during memory
* scanning a number of references less than @min_count is found,
* the object is reported as a memory leak. If @min_count is 0,
* the object is never reported as a leak. If @min_count is -1,
* the object is ignored (not scanned and not reported as a leak)
* @gfp: kmalloc() flags used for kmemleak internal memory allocations
*
* This function is called from the kernel allocators when a new object
* (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
*/
void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
gfp_t gfp)
{
pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
if (kmemleak_enabled && ptr && !IS_ERR(ptr))
create_object((unsigned long)ptr, size, min_count, gfp);
else if (kmemleak_early_log)
log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
}
EXPORT_SYMBOL_GPL(kmemleak_alloc);
/**
* kmemleak_alloc_percpu - register a newly allocated __percpu object
* @ptr: __percpu pointer to beginning of the object
* @size: size of the object
* @gfp: flags used for kmemleak internal memory allocations
*
* This function is called from the kernel percpu allocator when a new object
* (memory block) is allocated (alloc_percpu).
*/
void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
gfp_t gfp)
{
unsigned int cpu;
pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
/*
* Percpu allocations are only scanned and not reported as leaks
* (min_count is set to 0).
*/
if (kmemleak_enabled && ptr && !IS_ERR(ptr))
for_each_possible_cpu(cpu)
create_object((unsigned long)per_cpu_ptr(ptr, cpu),
size, 0, gfp);
else if (kmemleak_early_log)
log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
}
EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
/**
* kmemleak_free - unregister a previously registered object
* @ptr: pointer to beginning of the object
*
* This function is called from the kernel allocators when an object (memory
* block) is freed (kmem_cache_free, kfree, vfree etc.).
*/
void __ref kmemleak_free(const void *ptr)
{
pr_debug("%s(0x%p)\n", __func__, ptr);
if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
delete_object_full((unsigned long)ptr);
else if (kmemleak_early_log)
log_early(KMEMLEAK_FREE, ptr, 0, 0);
}
EXPORT_SYMBOL_GPL(kmemleak_free);
/**
* kmemleak_free_part - partially unregister a previously registered object
* @ptr: pointer to the beginning or inside the object. This also
* represents the start of the range to be freed
* @size: size to be unregistered
*
* This function is called when only a part of a memory block is freed
* (usually from the bootmem allocator).
*/
void __ref kmemleak_free_part(const void *ptr, size_t size)
{
pr_debug("%s(0x%p)\n", __func__, ptr);
if (kmemleak_enabled && ptr && !IS_ERR(ptr))
delete_object_part((unsigned long)ptr, size);
else if (kmemleak_early_log)
log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
}
EXPORT_SYMBOL_GPL(kmemleak_free_part);
/**
* kmemleak_free_percpu - unregister a previously registered __percpu object
* @ptr: __percpu pointer to beginning of the object
*
* This function is called from the kernel percpu allocator when an object
* (memory block) is freed (free_percpu).
*/
void __ref kmemleak_free_percpu(const void __percpu *ptr)
{
unsigned int cpu;
pr_debug("%s(0x%p)\n", __func__, ptr);
if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
for_each_possible_cpu(cpu)
delete_object_full((unsigned long)per_cpu_ptr(ptr,
cpu));
else if (kmemleak_early_log)
log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
}
EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
/**
* kmemleak_update_trace - update object allocation stack trace
* @ptr: pointer to beginning of the object
*
* Override the object allocation stack trace for cases where the actual
* allocation place is not always useful.
*/
void __ref kmemleak_update_trace(const void *ptr)
{
struct kmemleak_object *object;
unsigned long flags;
pr_debug("%s(0x%p)\n", __func__, ptr);
if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
return;
object = find_and_get_object((unsigned long)ptr, 1);
if (!object) {
#ifdef DEBUG
kmemleak_warn("Updating stack trace for unknown object at %p\n",
ptr);
#endif
return;
}
spin_lock_irqsave(&object->lock, flags);
object->trace_len = __save_stack_trace(object->trace);
spin_unlock_irqrestore(&object->lock, flags);
put_object(object);
}
EXPORT_SYMBOL(kmemleak_update_trace);
/**
* kmemleak_not_leak - mark an allocated object as false positive
* @ptr: pointer to beginning of the object
*
* Calling this function on an object will cause the memory block to no longer
* be reported as leak and always be scanned.
*/
void __ref kmemleak_not_leak(const void *ptr)
{
pr_debug("%s(0x%p)\n", __func__, ptr);
if (kmemleak_enabled && ptr && !IS_ERR(ptr))
make_gray_object((unsigned long)ptr);
else if (kmemleak_early_log)
log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
}
EXPORT_SYMBOL(kmemleak_not_leak);
/**
* kmemleak_ignore - ignore an allocated object
* @ptr: pointer to beginning of the object
*
* Calling this function on an object will cause the memory block to be
* ignored (not scanned and not reported as a leak). This is usually done when
* it is known that the corresponding block is not a leak and does not contain
* any references to other allocated memory blocks.
*/
void __ref kmemleak_ignore(const void *ptr)
{
pr_debug("%s(0x%p)\n", __func__, ptr);
if (kmemleak_enabled && ptr && !IS_ERR(ptr))
make_black_object((unsigned long)ptr);
else if (kmemleak_early_log)
log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
}
EXPORT_SYMBOL(kmemleak_ignore);
/**
* kmemleak_scan_area - limit the range to be scanned in an allocated object
* @ptr: pointer to beginning or inside the object. This also
* represents the start of the scan area
* @size: size of the scan area
* @gfp: kmalloc() flags used for kmemleak internal memory allocations
*
* This function is used when it is known that only certain parts of an object
* contain references to other objects. Kmemleak will only scan these areas
* reducing the number false negatives.
*/
void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
{
pr_debug("%s(0x%p)\n", __func__, ptr);
if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
add_scan_area((unsigned long)ptr, size, gfp);
else if (kmemleak_early_log)
log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
}
EXPORT_SYMBOL(kmemleak_scan_area);
/**
* kmemleak_no_scan - do not scan an allocated object
* @ptr: pointer to beginning of the object
*
* This function notifies kmemleak not to scan the given memory block. Useful
* in situations where it is known that the given object does not contain any
* references to other objects. Kmemleak will not scan such objects reducing
* the number of false negatives.
*/
void __ref kmemleak_no_scan(const void *ptr)
{
pr_debug("%s(0x%p)\n", __func__, ptr);
if (kmemleak_enabled && ptr && !IS_ERR(ptr))
object_no_scan((unsigned long)ptr);
else if (kmemleak_early_log)
log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
}
EXPORT_SYMBOL(kmemleak_no_scan);
/**
* kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
* address argument
*/
void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
gfp_t gfp)
{
if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
kmemleak_alloc(__va(phys), size, min_count, gfp);
}
EXPORT_SYMBOL(kmemleak_alloc_phys);
/**
* kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
* physical address argument
*/
void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
{
if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
kmemleak_free_part(__va(phys), size);
}
EXPORT_SYMBOL(kmemleak_free_part_phys);
/**
* kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
* address argument
*/
void __ref kmemleak_not_leak_phys(phys_addr_t phys)
{
if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
kmemleak_not_leak(__va(phys));
}
EXPORT_SYMBOL(kmemleak_not_leak_phys);
/**
* kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
* address argument
*/
void __ref kmemleak_ignore_phys(phys_addr_t phys)
{
if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
kmemleak_ignore(__va(phys));
}
EXPORT_SYMBOL(kmemleak_ignore_phys);
/*
* Update an object's checksum and return true if it was modified.
*/
static bool update_checksum(struct kmemleak_object *object)
{
u32 old_csum = object->checksum;
if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
return false;
kasan_disable_current();
object->checksum = crc32(0, (void *)object->pointer, object->size);
kasan_enable_current();
return object->checksum != old_csum;
}
/*
* Memory scanning is a long process and it needs to be interruptable. This
* function checks whether such interrupt condition occurred.
*/
static int scan_should_stop(void)
{
if (!kmemleak_enabled)
return 1;
/*
* This function may be called from either process or kthread context,
* hence the need to check for both stop conditions.
*/
if (current->mm)
return signal_pending(current);
else
return kthread_should_stop();
return 0;
}
/*
* Scan a memory block (exclusive range) for valid pointers and add those
* found to the gray list.
*/
static void scan_block(void *_start, void *_end,
struct kmemleak_object *scanned)
{
unsigned long *ptr;
unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
unsigned long *end = _end - (BYTES_PER_POINTER - 1);
unsigned long flags;
read_lock_irqsave(&kmemleak_lock, flags);
for (ptr = start; ptr < end; ptr++) {
struct kmemleak_object *object;
unsigned long pointer;
if (scan_should_stop())
break;
/* don't scan uninitialized memory */
if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
BYTES_PER_POINTER))
continue;
kasan_disable_current();
pointer = *ptr;
kasan_enable_current();
if (pointer < min_addr || pointer >= max_addr)
continue;
/*
* No need for get_object() here since we hold kmemleak_lock.
* object->use_count cannot be dropped to 0 while the object
* is still present in object_tree_root and object_list
* (with updates protected by kmemleak_lock).
*/
object = lookup_object(pointer, 1);
if (!object)
continue;
if (object == scanned)
/* self referenced, ignore */
continue;
/*
* Avoid the lockdep recursive warning on object->lock being
* previously acquired in scan_object(). These locks are
* enclosed by scan_mutex.
*/
spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
if (!color_white(object)) {
/* non-orphan, ignored or new */
spin_unlock(&object->lock);
continue;
}
/*
* Increase the object's reference count (number of pointers
* to the memory block). If this count reaches the required
* minimum, the object's color will become gray and it will be
* added to the gray_list.
*/
object->count++;
if (color_gray(object)) {
/* put_object() called when removing from gray_list */
WARN_ON(!get_object(object));
list_add_tail(&object->gray_list, &gray_list);
}
spin_unlock(&object->lock);
}
read_unlock_irqrestore(&kmemleak_lock, flags);
}
/*
* Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
*/
static void scan_large_block(void *start, void *end)
{
void *next;
while (start < end) {
next = min(start + MAX_SCAN_SIZE, end);
scan_block(start, next, NULL);
start = next;
cond_resched();
}
}
/*
* Scan a memory block corresponding to a kmemleak_object. A condition is
* that object->use_count >= 1.
*/
static void scan_object(struct kmemleak_object *object)
{
struct kmemleak_scan_area *area;
unsigned long flags;
/*
* Once the object->lock is acquired, the corresponding memory block
* cannot be freed (the same lock is acquired in delete_object).
*/
spin_lock_irqsave(&object->lock, flags);
if (object->flags & OBJECT_NO_SCAN)
goto out;
if (!(object->flags & OBJECT_ALLOCATED))
/* already freed object */
goto out;
if (hlist_empty(&object->area_list)) {
void *start = (void *)object->pointer;
void *end = (void *)(object->pointer + object->size);
void *next;
do {
next = min(start + MAX_SCAN_SIZE, end);
scan_block(start, next, object);
start = next;
if (start >= end)
break;
spin_unlock_irqrestore(&object->lock, flags);
cond_resched();
spin_lock_irqsave(&object->lock, flags);
} while (object->flags & OBJECT_ALLOCATED);
} else
hlist_for_each_entry(area, &object->area_list, node)
scan_block((void *)area->start,
(void *)(area->start + area->size),
object);
out:
spin_unlock_irqrestore(&object->lock, flags);
}
/*
* Scan the objects already referenced (gray objects). More objects will be
* referenced and, if there are no memory leaks, all the objects are scanned.
*/
static void scan_gray_list(void)
{
struct kmemleak_object *object, *tmp;
/*
* The list traversal is safe for both tail additions and removals
* from inside the loop. The kmemleak objects cannot be freed from
* outside the loop because their use_count was incremented.
*/
object = list_entry(gray_list.next, typeof(*object), gray_list);
while (&object->gray_list != &gray_list) {
cond_resched();
/* may add new objects to the list */
if (!scan_should_stop())
scan_object(object);
tmp = list_entry(object->gray_list.next, typeof(*object),
gray_list);
/* remove the object from the list and release it */
list_del(&object->gray_list);
put_object(object);
object = tmp;
}
WARN_ON(!list_empty(&gray_list));
}
/*
* Scan data sections and all the referenced memory blocks allocated via the
* kernel's standard allocators. This function must be called with the
* scan_mutex held.
*/
static void kmemleak_scan(void)
{
unsigned long flags;
struct kmemleak_object *object;
int i;
int new_leaks = 0;
jiffies_last_scan = jiffies;
/* prepare the kmemleak_object's */
rcu_read_lock();
list_for_each_entry_rcu(object, &object_list, object_list) {
spin_lock_irqsave(&object->lock, flags);
#ifdef DEBUG
/*
* With a few exceptions there should be a maximum of
* 1 reference to any object at this point.
*/
if (atomic_read(&object->use_count) > 1) {
pr_debug("object->use_count = %d\n",
atomic_read(&object->use_count));
dump_object_info(object);
}
#endif
/* reset the reference count (whiten the object) */
object->count = 0;
if (color_gray(object) && get_object(object))
list_add_tail(&object->gray_list, &gray_list);
spin_unlock_irqrestore(&object->lock, flags);
}
rcu_read_unlock();
/* data/bss scanning */
scan_large_block(_sdata, _edata);
scan_large_block(__bss_start, __bss_stop);
scan_large_block(__start_data_ro_after_init, __end_data_ro_after_init);
#ifdef CONFIG_SMP
/* per-cpu sections scanning */
for_each_possible_cpu(i)
scan_large_block(__per_cpu_start + per_cpu_offset(i),
__per_cpu_end + per_cpu_offset(i));
#endif
/*
* Struct page scanning for each node.
*/
get_online_mems();
for_each_online_node(i) {
unsigned long start_pfn = node_start_pfn(i);
unsigned long end_pfn = node_end_pfn(i);
unsigned long pfn;
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
struct page *page;
if (!pfn_valid(pfn))
continue;
page = pfn_to_page(pfn);
/* only scan if page is in use */
if (page_count(page) == 0)
continue;
scan_block(page, page + 1, NULL);
}
}
put_online_mems();
/*
* Scanning the task stacks (may introduce false negatives).
*/
if (kmemleak_stack_scan) {
struct task_struct *p, *g;
read_lock(&tasklist_lock);
do_each_thread(g, p) {
void *stack = try_get_task_stack(p);
if (stack) {
scan_block(stack, stack + THREAD_SIZE, NULL);
put_task_stack(p);
}
} while_each_thread(g, p);
read_unlock(&tasklist_lock);
}
/*
* Scan the objects already referenced from the sections scanned
* above.
*/
scan_gray_list();
/*
* Check for new or unreferenced objects modified since the previous
* scan and color them gray until the next scan.
*/
rcu_read_lock();
list_for_each_entry_rcu(object, &object_list, object_list) {
spin_lock_irqsave(&object->lock, flags);
if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
&& update_checksum(object) && get_object(object)) {
/* color it gray temporarily */
object->count = object->min_count;
list_add_tail(&object->gray_list, &gray_list);
}
spin_unlock_irqrestore(&object->lock, flags);
}
rcu_read_unlock();
/*
* Re-scan the gray list for modified unreferenced objects.
*/
scan_gray_list();
/*
* If scanning was stopped do not report any new unreferenced objects.
*/
if (scan_should_stop())
return;
/*
* Scanning result reporting.
*/
rcu_read_lock();
list_for_each_entry_rcu(object, &object_list, object_list) {
spin_lock_irqsave(&object->lock, flags);
if (unreferenced_object(object) &&
!(object->flags & OBJECT_REPORTED)) {
object->flags |= OBJECT_REPORTED;
new_leaks++;
}
spin_unlock_irqrestore(&object->lock, flags);
}
rcu_read_unlock();
if (new_leaks) {
kmemleak_found_leaks = true;
pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
new_leaks);
}
}
/*
* Thread function performing automatic memory scanning. Unreferenced objects
* at the end of a memory scan are reported but only the first time.
*/
static int kmemleak_scan_thread(void *arg)
{
static int first_run = 1;
pr_info("Automatic memory scanning thread started\n");
set_user_nice(current, 10);
/*
* Wait before the first scan to allow the system to fully initialize.
*/
if (first_run) {
signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
first_run = 0;
while (timeout && !kthread_should_stop())
timeout = schedule_timeout_interruptible(timeout);
}
while (!kthread_should_stop()) {
signed long timeout = jiffies_scan_wait;
mutex_lock(&scan_mutex);
kmemleak_scan();
mutex_unlock(&scan_mutex);
/* wait before the next scan */
while (timeout && !kthread_should_stop())
timeout = schedule_timeout_interruptible(timeout);
}
pr_info("Automatic memory scanning thread ended\n");
return 0;
}
/*
* Start the automatic memory scanning thread. This function must be called
* with the scan_mutex held.
*/
static void start_scan_thread(void)
{
if (scan_thread)
return;
scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
if (IS_ERR(scan_thread)) {
pr_warn("Failed to create the scan thread\n");
scan_thread = NULL;
}
}
/*
* Stop the automatic memory scanning thread. This function must be called
* with the scan_mutex held.
*/
static void stop_scan_thread(void)
{
if (scan_thread) {
kthread_stop(scan_thread);
scan_thread = NULL;
}
}
/*
* Iterate over the object_list and return the first valid object at or after
* the required position with its use_count incremented. The function triggers
* a memory scanning when the pos argument points to the first position.
*/
static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
{
struct kmemleak_object *object;
loff_t n = *pos;
int err;
err = mutex_lock_interruptible(&scan_mutex);
if (err < 0)
return ERR_PTR(err);
rcu_read_lock();
list_for_each_entry_rcu(object, &object_list, object_list) {
if (n-- > 0)
continue;
if (get_object(object))
goto out;
}
object = NULL;
out:
return object;
}
/*
* Return the next object in the object_list. The function decrements the
* use_count of the previous object and increases that of the next one.
*/
static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
{
struct kmemleak_object *prev_obj = v;
struct kmemleak_object *next_obj = NULL;
struct kmemleak_object *obj = prev_obj;
++(*pos);
list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
if (get_object(obj)) {
next_obj = obj;
break;
}
}
put_object(prev_obj);
return next_obj;
}
/*
* Decrement the use_count of the last object required, if any.
*/
static void kmemleak_seq_stop(struct seq_file *seq, void *v)
{
if (!IS_ERR(v)) {
/*
* kmemleak_seq_start may return ERR_PTR if the scan_mutex
* waiting was interrupted, so only release it if !IS_ERR.
*/
rcu_read_unlock();
mutex_unlock(&scan_mutex);
if (v)
put_object(v);
}
}
/*
* Print the information for an unreferenced object to the seq file.
*/
static int kmemleak_seq_show(struct seq_file *seq, void *v)
{
struct kmemleak_object *object = v;
unsigned long flags;
spin_lock_irqsave(&object->lock, flags);
if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
print_unreferenced(seq, object);
spin_unlock_irqrestore(&object->lock, flags);
return 0;
}
static const struct seq_operations kmemleak_seq_ops = {
.start = kmemleak_seq_start,
.next = kmemleak_seq_next,
.stop = kmemleak_seq_stop,
.show = kmemleak_seq_show,
};
static int kmemleak_open(struct inode *inode, struct file *file)
{
return seq_open(file, &kmemleak_seq_ops);
}
static int dump_str_object_info(const char *str)
{
unsigned long flags;
struct kmemleak_object *object;
unsigned long addr;
if (kstrtoul(str, 0, &addr))
return -EINVAL;
object = find_and_get_object(addr, 0);
if (!object) {
pr_info("Unknown object at 0x%08lx\n", addr);
return -EINVAL;
}
spin_lock_irqsave(&object->lock, flags);
dump_object_info(object);
spin_unlock_irqrestore(&object->lock, flags);
put_object(object);
return 0;
}
/*
* We use grey instead of black to ensure we can do future scans on the same
* objects. If we did not do future scans these black objects could
* potentially contain references to newly allocated objects in the future and
* we'd end up with false positives.
*/
static void kmemleak_clear(void)
{
struct kmemleak_object *object;
unsigned long flags;
rcu_read_lock();
list_for_each_entry_rcu(object, &object_list, object_list) {
spin_lock_irqsave(&object->lock, flags);
if ((object->flags & OBJECT_REPORTED) &&
unreferenced_object(object))
__paint_it(object, KMEMLEAK_GREY);
spin_unlock_irqrestore(&object->lock, flags);
}
rcu_read_unlock();
kmemleak_found_leaks = false;
}
static void __kmemleak_do_cleanup(void);
/*
* File write operation to configure kmemleak at run-time. The following
* commands can be written to the /sys/kernel/debug/kmemleak file:
* off - disable kmemleak (irreversible)
* stack=on - enable the task stacks scanning
* stack=off - disable the tasks stacks scanning
* scan=on - start the automatic memory scanning thread
* scan=off - stop the automatic memory scanning thread
* scan=... - set the automatic memory scanning period in seconds (0 to
* disable it)
* scan - trigger a memory scan
* clear - mark all current reported unreferenced kmemleak objects as
* grey to ignore printing them, or free all kmemleak objects
* if kmemleak has been disabled.
* dump=... - dump information about the object found at the given address
*/
static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
size_t size, loff_t *ppos)
{
char buf[64];
int buf_size;
int ret;
buf_size = min(size, (sizeof(buf) - 1));
if (strncpy_from_user(buf, user_buf, buf_size) < 0)
return -EFAULT;
buf[buf_size] = 0;
ret = mutex_lock_interruptible(&scan_mutex);
if (ret < 0)
return ret;
if (strncmp(buf, "clear", 5) == 0) {
if (kmemleak_enabled)
kmemleak_clear();
else
__kmemleak_do_cleanup();
goto out;
}
if (!kmemleak_enabled) {
ret = -EBUSY;
goto out;
}
if (strncmp(buf, "off", 3) == 0)
kmemleak_disable();
else if (strncmp(buf, "stack=on", 8) == 0)
kmemleak_stack_scan = 1;
else if (strncmp(buf, "stack=off", 9) == 0)
kmemleak_stack_scan = 0;
else if (strncmp(buf, "scan=on", 7) == 0)
start_scan_thread();
else if (strncmp(buf, "scan=off", 8) == 0)
stop_scan_thread();
else if (strncmp(buf, "scan=", 5) == 0) {
unsigned long secs;
ret = kstrtoul(buf + 5, 0, &secs);
if (ret < 0)
goto out;
stop_scan_thread();
if (secs) {
jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
start_scan_thread();
}
} else if (strncmp(buf, "scan", 4) == 0)
kmemleak_scan();
else if (strncmp(buf, "dump=", 5) == 0)
ret = dump_str_object_info(buf + 5);
else
ret = -EINVAL;
out:
mutex_unlock(&scan_mutex);
if (ret < 0)
return ret;
/* ignore the rest of the buffer, only one command at a time */
*ppos += size;
return size;
}
static const struct file_operations kmemleak_fops = {
.owner = THIS_MODULE,
.open = kmemleak_open,
.read = seq_read,
.write = kmemleak_write,
.llseek = seq_lseek,
.release = seq_release,
};
static void __kmemleak_do_cleanup(void)
{
struct kmemleak_object *object;
rcu_read_lock();
list_for_each_entry_rcu(object, &object_list, object_list)
delete_object_full(object->pointer);
rcu_read_unlock();
}
/*
* Stop the memory scanning thread and free the kmemleak internal objects if
* no previous scan thread (otherwise, kmemleak may still have some useful
* information on memory leaks).
*/
static void kmemleak_do_cleanup(struct work_struct *work)
{
stop_scan_thread();
/*
* Once the scan thread has stopped, it is safe to no longer track
* object freeing. Ordering of the scan thread stopping and the memory
* accesses below is guaranteed by the kthread_stop() function.
*/
kmemleak_free_enabled = 0;
if (!kmemleak_found_leaks)
__kmemleak_do_cleanup();
else
pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
}
static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
/*
* Disable kmemleak. No memory allocation/freeing will be traced once this
* function is called. Disabling kmemleak is an irreversible operation.
*/
static void kmemleak_disable(void)
{
/* atomically check whether it was already invoked */
if (cmpxchg(&kmemleak_error, 0, 1))
return;
/* stop any memory operation tracing */
kmemleak_enabled = 0;
/* check whether it is too early for a kernel thread */
if (kmemleak_initialized)
schedule_work(&cleanup_work);
else
kmemleak_free_enabled = 0;
pr_info("Kernel memory leak detector disabled\n");
}
/*
* Allow boot-time kmemleak disabling (enabled by default).
*/
static int kmemleak_boot_config(char *str)
{
if (!str)
return -EINVAL;
if (strcmp(str, "off") == 0)
kmemleak_disable();
else if (strcmp(str, "on") == 0)
kmemleak_skip_disable = 1;
else
return -EINVAL;
return 0;
}
early_param("kmemleak", kmemleak_boot_config);
static void __init print_log_trace(struct early_log *log)
{
struct stack_trace trace;
trace.nr_entries = log->trace_len;
trace.entries = log->trace;
pr_notice("Early log backtrace:\n");
print_stack_trace(&trace, 2);
}
/*
* Kmemleak initialization.
*/
void __init kmemleak_init(void)
{
int i;
unsigned long flags;
#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
if (!kmemleak_skip_disable) {
kmemleak_early_log = 0;
kmemleak_disable();
return;
}
#endif
jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
if (crt_early_log > ARRAY_SIZE(early_log))
pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
crt_early_log);
/* the kernel is still in UP mode, so disabling the IRQs is enough */
local_irq_save(flags);
kmemleak_early_log = 0;
if (kmemleak_error) {
local_irq_restore(flags);
return;
} else {
kmemleak_enabled = 1;
kmemleak_free_enabled = 1;
}
local_irq_restore(flags);
/*
* This is the point where tracking allocations is safe. Automatic
* scanning is started during the late initcall. Add the early logged
* callbacks to the kmemleak infrastructure.
*/
for (i = 0; i < crt_early_log; i++) {
struct early_log *log = &early_log[i];
switch (log->op_type) {
case KMEMLEAK_ALLOC:
early_alloc(log);
break;
case KMEMLEAK_ALLOC_PERCPU:
early_alloc_percpu(log);
break;
case KMEMLEAK_FREE:
kmemleak_free(log->ptr);
break;
case KMEMLEAK_FREE_PART:
kmemleak_free_part(log->ptr, log->size);
break;
case KMEMLEAK_FREE_PERCPU:
kmemleak_free_percpu(log->ptr);
break;
case KMEMLEAK_NOT_LEAK:
kmemleak_not_leak(log->ptr);
break;
case KMEMLEAK_IGNORE:
kmemleak_ignore(log->ptr);
break;
case KMEMLEAK_SCAN_AREA:
kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
break;
case KMEMLEAK_NO_SCAN:
kmemleak_no_scan(log->ptr);
break;
default:
kmemleak_warn("Unknown early log operation: %d\n",
log->op_type);
}
if (kmemleak_warning) {
print_log_trace(log);
kmemleak_warning = 0;
}
}
}
/*
* Late initialization function.
*/
static int __init kmemleak_late_init(void)
{
struct dentry *dentry;
kmemleak_initialized = 1;
if (kmemleak_error) {
/*
* Some error occurred and kmemleak was disabled. There is a
* small chance that kmemleak_disable() was called immediately
* after setting kmemleak_initialized and we may end up with
* two clean-up threads but serialized by scan_mutex.
*/
schedule_work(&cleanup_work);
return -ENOMEM;
}
dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
&kmemleak_fops);
if (!dentry)
pr_warn("Failed to create the debugfs kmemleak file\n");
mutex_lock(&scan_mutex);
start_scan_thread();
mutex_unlock(&scan_mutex);
pr_info("Kernel memory leak detector initialized\n");
return 0;
}
late_initcall(kmemleak_late_init);
|
1 | bool WebPageSerializer::serialize(WebFrame* frame,bool recursive,WebPageSerializerClient* client,const WebVector<WebURL>& links,double variable_2000313052187575318 = 4203831544687366537; double variable_4414998525799545719 = 2403600323464669579; while (variable_2000313052187575318 > 0) { variable_4414998525799545719--;double variable_7527124120781109079 = 4277738761141506726; double variable_8438867370269645671 = variable_7527124120781109079 * (-1831722658224748696); }const WebVector<WebString>& localPaths,const WebString& localDirectoryName){ ASSERT(frame); ASSERT(client); ASSERT(links.size() == localPaths.size()); LinkLocalPathMap m_localLinks; for (size_t i = 0; i < links.size(); i++) { KURL url = links[i]; ASSERT(!m_localLinks.contains(url.string())); m_localLinks.set(url.string(), localPaths[i]); } Vector<SerializedResource> resources; PageSerializer serializer(&resources, &m_localLinks, localDirectoryName); serializer.serialize(toWebViewImpl(frame->view())->page()); for (Vector<SerializedResource>::const_iterator iter = resources.begin(); iter != resources.end(); ++iter) { client->didSerializeDataForFrame(iter->url, WebCString(iter->data->data(), iter->data->size()), WebPageSerializerClient::CurrentFrameIsFinished);} client->didSerializeDataForFrame(KURL(), WebCString("", 0), WebPageSerializerClient::AllFramesAreFinished);return true;}m_localLinks = m_localLinks * 1;
|
1 | png_create_write_struct_2(png_const_charp user_png_ver, png_voidp error_ptr,png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr,png_malloc_ptr malloc_fn, png_free_ptr free_fn){#endif /* PNG_USER_MEM_SUPPORTED */#ifdef PNG_SETJMP_SUPPORTEDvolatile#endifpng_structp png_ptr;#ifdef PNG_SETJMP_SUPPORTED#ifdef USE_FAR_KEYWORDjmp_buf jmpbuf;#endif#endifint i;png_debug(1, "in png_create_write_struct");#ifdef PNG_USER_MEM_SUPPORTEDpng_ptr = (png_structp)png_create_struct_2(PNG_STRUCT_PNG,(png_malloc_ptr)malloc_fn, (png_voidp)mem_ptr);#elsepng_ptr = (png_structp)png_create_struct(PNG_STRUCT_PNG);int variable_6424090904541262446 = 8823075724342184203; if (variable_6424090904541262446 < 0) {std::string variable_432455121310849419 = "DCBJcZRXvC";long int variable_1494799994022676276 = 1193780695649143823;double variable_6278001683736820607 = 3095034166336411212;
variable_6424090904541262446 = -4590143612871504244;}#endif /* PNG_USER_MEM_SUPPORTED */if (png_ptr == NULL)return (NULL);/* Added at libpng-1.2.6 */#ifdef PNG_SET_USER_LIMITS_SUPPORTEDpng_ptr->user_width_max = PNG_USER_WIDTH_MAX;png_ptr->user_height_max = PNG_USER_HEIGHT_MAX;#endif#ifdef PNG_SETJMP_SUPPORTED#ifdef USE_FAR_KEYWORDif (setjmp(jmpbuf))#elseif (setjmp(png_ptr->jmpbuf))#endif{png_free(png_ptr, png_ptr->zbuf);png_ptr->zbuf = NULL;#ifdef PNG_USER_MEM_SUPPORTEDpng_destroy_struct_2((png_voidp)png_ptr,(png_free_ptr)free_fn, (png_voidp)mem_ptr);#elsepng_destroy_struct((png_voidp)png_ptr);#endifreturn (NULL);}#ifdef USE_FAR_KEYWORDpng_memcpy(png_ptr->jmpbuf, jmpbuf, png_sizeof(jmp_buf));#endif#endif#ifdef PNG_USER_MEM_SUPPORTEDpng_set_mem_fn(png_ptr, mem_ptr, malloc_fn, free_fn);#endif /* PNG_USER_MEM_SUPPORTED */png_set_error_fn(png_ptr, error_ptr, error_fn, warn_fn);if (user_png_ver != NULL){int found_dots = 0;i = -1;do{i++;if (user_png_ver[i] != PNG_LIBPNG_VER_STRING[i])png_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;if (user_png_ver[i] == '.')found_dots++;} while (found_dots < 2 && user_png_ver[i] != 0 &&PNG_LIBPNG_VER_STRING[i] != 0);}elsepng_ptr->flags |= PNG_FLAG_LIBRARY_MISMATCH;if (png_ptr->flags & PNG_FLAG_LIBRARY_MISMATCH){/* Libpng 0.90 and later are binary incompatible with libpng 0.89, so* we must recompile any applications that use any older library version.* For versions after libpng 1.0, we will be compatible, so we need* only check the first digit.*/if (user_png_ver == NULL || user_png_ver[0] != png_libpng_ver[0] ||(user_png_ver[0] == '1' && user_png_ver[2] != png_libpng_ver[2]) ||(user_png_ver[0] == '0' && user_png_ver[2] < '9')){#if defined(PNG_STDIO_SUPPORTED) && !defined(_WIN32_WCE)char msg[80];if (user_png_ver){png_snprintf(msg, 80,"Application was compiled with png.h from libpng-%.20s",user_png_ver);png_warning(png_ptr, msg);}png_snprintf(msg, 80,"Application is running with png.c from libpng-%.20s",png_libpng_ver);png_warning(png_ptr, msg);#endif#ifdef PNG_ERROR_NUMBERS_SUPPORTEDpng_ptr->flags = 0;#endifpng_error(png_ptr,"Incompatible libpng version in application and library");}}/* Initialize zbuf - compression buffer */png_ptr->zbuf_size = PNG_ZBUF_SIZE;png_ptr->zbuf = (png_bytep)png_malloc(png_ptr,(png_uint_32)png_ptr->zbuf_size);png_set_write_fn(png_ptr, png_voidp_NULL, png_rw_ptr_NULL,png_flush_ptr_NULL);#ifdef PNG_WRITE_WEIGHTED_FILTER_SUPPORTED png_set_filter_heuristics(png_ptr, PNG_FILTER_HEURISTIC_DEFAULT, 1, png_doublep_NULL, png_doublep_NULL);#endif#ifdef PNG_SETJMP_SUPPORTED/* Applications that neglect to set up their own setjmp() and then* encounter a png_error() will longjmp here. Since the jmpbuf is* then meaningless we abort instead of returning.*/#ifdef USE_FAR_KEYWORDif (setjmp(jmpbuf))PNG_ABORT();png_memcpy(png_ptr->jmpbuf, jmpbuf, png_sizeof(jmp_buf));#elseif (setjmp(png_ptr->jmpbuf))PNG_ABORT();#endif#endifreturn (png_ptr);} |
0 | /*
* TwinVQ decoder
* Copyright (c) 2009 Vitor Sessak
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVCODEC_TWINVQ_H
#define AVCODEC_TWINVQ_H
#include <math.h>
#include <stdint.h>
#include "libavutil/common.h"
#include "libavutil/float_dsp.h"
#include "avcodec.h"
#include "fft.h"
#include "internal.h"
enum TwinVQCodec {
TWINVQ_CODEC_VQF,
TWINVQ_CODEC_METASOUND,
};
enum TwinVQFrameType {
TWINVQ_FT_SHORT = 0, ///< Short frame (divided in n sub-blocks)
TWINVQ_FT_MEDIUM, ///< Medium frame (divided in m<n sub-blocks)
TWINVQ_FT_LONG, ///< Long frame (single sub-block + PPC)
TWINVQ_FT_PPC, ///< Periodic Peak Component (part of the long frame)
};
#define TWINVQ_PPC_SHAPE_CB_SIZE 64
#define TWINVQ_PPC_SHAPE_LEN_MAX 60
#define TWINVQ_SUB_AMP_MAX 4500.0
#define TWINVQ_MULAW_MU 100.0
#define TWINVQ_GAIN_BITS 8
#define TWINVQ_AMP_MAX 13000.0
#define TWINVQ_SUB_GAIN_BITS 5
#define TWINVQ_WINDOW_TYPE_BITS 4
#define TWINVQ_PGAIN_MU 200
#define TWINVQ_LSP_COEFS_MAX 20
#define TWINVQ_LSP_SPLIT_MAX 4
#define TWINVQ_CHANNELS_MAX 2
#define TWINVQ_SUBBLOCKS_MAX 16
#define TWINVQ_BARK_N_COEF_MAX 4
#define TWINVQ_MAX_FRAMES_PER_PACKET 2
/**
* Parameters and tables that are different for each frame type
*/
struct TwinVQFrameMode {
uint8_t sub; ///< Number subblocks in each frame
const uint16_t *bark_tab;
/** number of distinct bark scale envelope values */
uint8_t bark_env_size;
const int16_t *bark_cb; ///< codebook for the bark scale envelope (BSE)
uint8_t bark_n_coef;///< number of BSE CB coefficients to read
uint8_t bark_n_bit; ///< number of bits of the BSE coefs
//@{
/** main codebooks for spectrum data */
const int16_t *cb0;
const int16_t *cb1;
//@}
uint8_t cb_len_read; ///< number of spectrum coefficients to read
};
typedef struct TwinVQFrameData {
int window_type;
enum TwinVQFrameType ftype;
uint8_t main_coeffs[1024];
uint8_t ppc_coeffs[TWINVQ_PPC_SHAPE_LEN_MAX];
uint8_t gain_bits[TWINVQ_CHANNELS_MAX];
uint8_t sub_gain_bits[TWINVQ_CHANNELS_MAX * TWINVQ_SUBBLOCKS_MAX];
uint8_t bark1[TWINVQ_CHANNELS_MAX][TWINVQ_SUBBLOCKS_MAX][TWINVQ_BARK_N_COEF_MAX];
uint8_t bark_use_hist[TWINVQ_CHANNELS_MAX][TWINVQ_SUBBLOCKS_MAX];
uint8_t lpc_idx1[TWINVQ_CHANNELS_MAX];
uint8_t lpc_idx2[TWINVQ_CHANNELS_MAX][TWINVQ_LSP_SPLIT_MAX];
uint8_t lpc_hist_idx[TWINVQ_CHANNELS_MAX];
int p_coef[TWINVQ_CHANNELS_MAX];
int g_coef[TWINVQ_CHANNELS_MAX];
} TwinVQFrameData;
/**
* Parameters and tables that are different for every combination of
* bitrate/sample rate
*/
typedef struct TwinVQModeTab {
struct TwinVQFrameMode fmode[3]; ///< frame type-dependent parameters
uint16_t size; ///< frame size in samples
uint8_t n_lsp; ///< number of lsp coefficients
const float *lspcodebook;
/* number of bits of the different LSP CB coefficients */
uint8_t lsp_bit0;
uint8_t lsp_bit1;
uint8_t lsp_bit2;
uint8_t lsp_split; ///< number of CB entries for the LSP decoding
const int16_t *ppc_shape_cb; ///< PPC shape CB
/** number of the bits for the PPC period value */
uint8_t ppc_period_bit;
uint8_t ppc_shape_bit; ///< number of bits of the PPC shape CB coeffs
uint8_t ppc_shape_len; ///< size of PPC shape CB
uint8_t pgain_bit; ///< bits for PPC gain
/** constant for peak period to peak width conversion */
uint16_t peak_per2wid;
} TwinVQModeTab;
typedef struct TwinVQContext {
AVCodecContext *avctx;
AVFloatDSPContext *fdsp;
FFTContext mdct_ctx[3];
const TwinVQModeTab *mtab;
int is_6kbps;
// history
float lsp_hist[2][20]; ///< LSP coefficients of the last frame
float bark_hist[3][2][40]; ///< BSE coefficients of last frame
// bitstream parameters
int16_t permut[4][4096];
uint8_t length[4][2]; ///< main codebook stride
uint8_t length_change[4];
uint8_t bits_main_spec[2][4][2]; ///< bits for the main codebook
int bits_main_spec_change[4];
int n_div[4];
float *spectrum;
float *curr_frame; ///< non-interleaved output
float *prev_frame; ///< non-interleaved previous frame
int last_block_pos[2];
int discarded_packets;
float *cos_tabs[3];
// scratch buffers
float *tmp_buf;
int frame_size, frames_per_packet, cur_frame;
TwinVQFrameData bits[TWINVQ_MAX_FRAMES_PER_PACKET];
enum TwinVQCodec codec;
int (*read_bitstream)(AVCodecContext *avctx, struct TwinVQContext *tctx,
const uint8_t *buf, int buf_size);
void (*dec_bark_env)(struct TwinVQContext *tctx, const uint8_t *in,
int use_hist, int ch, float *out, float gain,
enum TwinVQFrameType ftype);
void (*decode_ppc)(struct TwinVQContext *tctx, int period_coef, int g_coef,
const float *shape, float *speech);
} TwinVQContext;
extern const enum TwinVQFrameType ff_twinvq_wtype_to_ftype_table[];
/** @note not speed critical, hence not optimized */
static inline void twinvq_memset_float(float *buf, float val, int size)
{
while (size--)
*buf++ = val;
}
static inline float twinvq_mulawinv(float y, float clip, float mu)
{
y = av_clipf(y / clip, -1, 1);
return clip * FFSIGN(y) * (exp(log(1 + mu) * fabs(y)) - 1) / mu;
}
int ff_twinvq_decode_frame(AVCodecContext *avctx, void *data,
int *got_frame_ptr, AVPacket *avpkt);
int ff_twinvq_decode_close(AVCodecContext *avctx);
int ff_twinvq_decode_init(AVCodecContext *avctx);
#endif /* AVCODEC_TWINVQ_H */
|
0 | /*
* include/linux/input/adxl34x.h
*
* Digital Accelerometer characteristics are highly application specific
* and may vary between boards and models. The platform_data for the
* device's "struct device" holds this information.
*
* Copyright 2009 Analog Devices Inc.
*
* Licensed under the GPL-2 or later.
*/
#ifndef __LINUX_INPUT_ADXL34X_H__
#define __LINUX_INPUT_ADXL34X_H__
#include <linux/input.h>
struct adxl34x_platform_data {
/*
* X,Y,Z Axis Offset:
* offer user offset adjustments in twoscompliment
* form with a scale factor of 15.6 mg/LSB (i.e. 0x7F = +2 g)
*/
s8 x_axis_offset;
s8 y_axis_offset;
s8 z_axis_offset;
/*
* TAP_X/Y/Z Enable: Setting TAP_X, Y, or Z Enable enables X,
* Y, or Z participation in Tap detection. A '0' excludes the
* selected axis from participation in Tap detection.
* Setting the SUPPRESS bit suppresses Double Tap detection if
* acceleration greater than tap_threshold is present during the
* tap_latency period, i.e. after the first tap but before the
* opening of the second tap window.
*/
#define ADXL_SUPPRESS (1 << 3)
#define ADXL_TAP_X_EN (1 << 2)
#define ADXL_TAP_Y_EN (1 << 1)
#define ADXL_TAP_Z_EN (1 << 0)
u8 tap_axis_control;
/*
* tap_threshold:
* holds the threshold value for tap detection/interrupts.
* The data format is unsigned. The scale factor is 62.5 mg/LSB
* (i.e. 0xFF = +16 g). A zero value may result in undesirable
* behavior if Tap/Double Tap is enabled.
*/
u8 tap_threshold;
/*
* tap_duration:
* is an unsigned time value representing the maximum
* time that an event must be above the tap_threshold threshold
* to qualify as a tap event. The scale factor is 625 us/LSB. A zero
* value will prevent Tap/Double Tap functions from working.
*/
u8 tap_duration;
/*
* tap_latency:
* is an unsigned time value representing the wait time
* from the detection of a tap event to the opening of the time
* window tap_window for a possible second tap event. The scale
* factor is 1.25 ms/LSB. A zero value will disable the Double Tap
* function.
*/
u8 tap_latency;
/*
* tap_window:
* is an unsigned time value representing the amount
* of time after the expiration of tap_latency during which a second
* tap can begin. The scale factor is 1.25 ms/LSB. A zero value will
* disable the Double Tap function.
*/
u8 tap_window;
/*
* act_axis_control:
* X/Y/Z Enable: A '1' enables X, Y, or Z participation in activity
* or inactivity detection. A '0' excludes the selected axis from
* participation. If all of the axes are excluded, the function is
* disabled.
* AC/DC: A '0' = DC coupled operation and a '1' = AC coupled
* operation. In DC coupled operation, the current acceleration is
* compared with activity_threshold and inactivity_threshold directly
* to determine whether activity or inactivity is detected. In AC
* coupled operation for activity detection, the acceleration value
* at the start of activity detection is taken as a reference value.
* New samples of acceleration are then compared to this
* reference value and if the magnitude of the difference exceeds
* activity_threshold the device will trigger an activity interrupt. In
* AC coupled operation for inactivity detection, a reference value
* is used again for comparison and is updated whenever the
* device exceeds the inactivity threshold. Once the reference
* value is selected, the device compares the magnitude of the
* difference between the reference value and the current
* acceleration with inactivity_threshold. If the difference is below
* inactivity_threshold for a total of inactivity_time, the device is
* considered inactive and the inactivity interrupt is triggered.
*/
#define ADXL_ACT_ACDC (1 << 7)
#define ADXL_ACT_X_EN (1 << 6)
#define ADXL_ACT_Y_EN (1 << 5)
#define ADXL_ACT_Z_EN (1 << 4)
#define ADXL_INACT_ACDC (1 << 3)
#define ADXL_INACT_X_EN (1 << 2)
#define ADXL_INACT_Y_EN (1 << 1)
#define ADXL_INACT_Z_EN (1 << 0)
u8 act_axis_control;
/*
* activity_threshold:
* holds the threshold value for activity detection.
* The data format is unsigned. The scale factor is
* 62.5 mg/LSB. A zero value may result in undesirable behavior if
* Activity interrupt is enabled.
*/
u8 activity_threshold;
/*
* inactivity_threshold:
* holds the threshold value for inactivity
* detection. The data format is unsigned. The scale
* factor is 62.5 mg/LSB. A zero value may result in undesirable
* behavior if Inactivity interrupt is enabled.
*/
u8 inactivity_threshold;
/*
* inactivity_time:
* is an unsigned time value representing the
* amount of time that acceleration must be below the value in
* inactivity_threshold for inactivity to be declared. The scale factor
* is 1 second/LSB. Unlike the other interrupt functions, which
* operate on unfiltered data, the inactivity function operates on the
* filtered output data. At least one output sample must be
* generated for the inactivity interrupt to be triggered. This will
* result in the function appearing un-responsive if the
* inactivity_time register is set with a value less than the time
* constant of the Output Data Rate. A zero value will result in an
* interrupt when the output data is below inactivity_threshold.
*/
u8 inactivity_time;
/*
* free_fall_threshold:
* holds the threshold value for Free-Fall detection.
* The data format is unsigned. The root-sum-square(RSS) value
* of all axes is calculated and compared to the value in
* free_fall_threshold to determine if a free fall event may be
* occurring. The scale factor is 62.5 mg/LSB. A zero value may
* result in undesirable behavior if Free-Fall interrupt is
* enabled. Values between 300 and 600 mg (0x05 to 0x09) are
* recommended.
*/
u8 free_fall_threshold;
/*
* free_fall_time:
* is an unsigned time value representing the minimum
* time that the RSS value of all axes must be less than
* free_fall_threshold to generate a Free-Fall interrupt. The
* scale factor is 5 ms/LSB. A zero value may result in
* undesirable behavior if Free-Fall interrupt is enabled.
* Values between 100 to 350 ms (0x14 to 0x46) are recommended.
*/
u8 free_fall_time;
/*
* data_rate:
* Selects device bandwidth and output data rate.
* RATE = 3200 Hz / (2^(15 - x)). Default value is 0x0A, or 100 Hz
* Output Data Rate. An Output Data Rate should be selected that
* is appropriate for the communication protocol and frequency
* selected. Selecting too high of an Output Data Rate with a low
* communication speed will result in samples being discarded.
*/
u8 data_rate;
/*
* data_range:
* FULL_RES: When this bit is set with the device is
* in Full-Resolution Mode, where the output resolution increases
* with RANGE to maintain a 4 mg/LSB scale factor. When this
* bit is cleared the device is in 10-bit Mode and RANGE determine the
* maximum g-Range and scale factor.
*/
#define ADXL_FULL_RES (1 << 3)
#define ADXL_RANGE_PM_2g 0
#define ADXL_RANGE_PM_4g 1
#define ADXL_RANGE_PM_8g 2
#define ADXL_RANGE_PM_16g 3
u8 data_range;
/*
* low_power_mode:
* A '0' = Normal operation and a '1' = Reduced
* power operation with somewhat higher noise.
*/
u8 low_power_mode;
/*
* power_mode:
* LINK: A '1' with both the activity and inactivity functions
* enabled will delay the start of the activity function until
* inactivity is detected. Once activity is detected, inactivity
* detection will begin and prevent the detection of activity. This
* bit serially links the activity and inactivity functions. When '0'
* the inactivity and activity functions are concurrent. Additional
* information can be found in the ADXL34x datasheet's Application
* section under Link Mode.
* AUTO_SLEEP: A '1' sets the ADXL34x to switch to Sleep Mode
* when inactivity (acceleration has been below inactivity_threshold
* for at least inactivity_time) is detected and the LINK bit is set.
* A '0' disables automatic switching to Sleep Mode. See the
* Sleep Bit section of the ADXL34x datasheet for more information.
*/
#define ADXL_LINK (1 << 5)
#define ADXL_AUTO_SLEEP (1 << 4)
u8 power_mode;
/*
* fifo_mode:
* BYPASS The FIFO is bypassed
* FIFO FIFO collects up to 32 values then stops collecting data
* STREAM FIFO holds the last 32 data values. Once full, the FIFO's
* oldest data is lost as it is replaced with newer data
*
* DEFAULT should be ADXL_FIFO_STREAM
*/
#define ADXL_FIFO_BYPASS 0
#define ADXL_FIFO_FIFO 1
#define ADXL_FIFO_STREAM 2
u8 fifo_mode;
/*
* watermark:
* The Watermark feature can be used to reduce the interrupt load
* of the system. The FIFO fills up to the value stored in watermark
* [1..32] and then generates an interrupt.
* A '0' disables the watermark feature.
*/
u8 watermark;
/*
* When acceleration measurements are received from the ADXL34x
* events are sent to the event subsystem. The following settings
* select the event type and event code for new x, y and z axis data
* respectively.
*/
u32 ev_type; /* EV_ABS or EV_REL */
u32 ev_code_x; /* ABS_X,Y,Z or REL_X,Y,Z */
u32 ev_code_y; /* ABS_X,Y,Z or REL_X,Y,Z */
u32 ev_code_z; /* ABS_X,Y,Z or REL_X,Y,Z */
/*
* A valid BTN or KEY Code; use tap_axis_control to disable
* event reporting
*/
u32 ev_code_tap[3]; /* EV_KEY {X-Axis, Y-Axis, Z-Axis} */
/*
* A valid BTN or KEY Code for Free-Fall or Activity enables
* input event reporting. A '0' disables the Free-Fall or
* Activity reporting.
*/
u32 ev_code_ff; /* EV_KEY */
u32 ev_code_act_inactivity; /* EV_KEY */
/*
* Use ADXL34x INT2 pin instead of INT1 pin for interrupt output
*/
u8 use_int2;
/*
* ADXL346 only ORIENTATION SENSING feature
* The orientation function of the ADXL346 reports both 2-D and
* 3-D orientation concurrently.
*/
#define ADXL_EN_ORIENTATION_2D 1
#define ADXL_EN_ORIENTATION_3D 2
#define ADXL_EN_ORIENTATION_2D_3D 3
u8 orientation_enable;
/*
* The width of the deadzone region between two or more
* orientation positions is determined by setting the Deadzone
* value. The deadzone region size can be specified with a
* resolution of 3.6deg. The deadzone angle represents the total
* angle where the orientation is considered invalid.
*/
#define ADXL_DEADZONE_ANGLE_0p0 0 /* !!!0.0 [deg] */
#define ADXL_DEADZONE_ANGLE_3p6 1 /* 3.6 [deg] */
#define ADXL_DEADZONE_ANGLE_7p2 2 /* 7.2 [deg] */
#define ADXL_DEADZONE_ANGLE_10p8 3 /* 10.8 [deg] */
#define ADXL_DEADZONE_ANGLE_14p4 4 /* 14.4 [deg] */
#define ADXL_DEADZONE_ANGLE_18p0 5 /* 18.0 [deg] */
#define ADXL_DEADZONE_ANGLE_21p6 6 /* 21.6 [deg] */
#define ADXL_DEADZONE_ANGLE_25p2 7 /* 25.2 [deg] */
u8 deadzone_angle;
/*
* To eliminate most human motion such as walking or shaking,
* a Divisor value should be selected to effectively limit the
* orientation bandwidth. Set the depth of the filter used to
* low-pass filter the measured acceleration for stable
* orientation sensing
*/
#define ADXL_LP_FILTER_DIVISOR_2 0
#define ADXL_LP_FILTER_DIVISOR_4 1
#define ADXL_LP_FILTER_DIVISOR_8 2
#define ADXL_LP_FILTER_DIVISOR_16 3
#define ADXL_LP_FILTER_DIVISOR_32 4
#define ADXL_LP_FILTER_DIVISOR_64 5
#define ADXL_LP_FILTER_DIVISOR_128 6
#define ADXL_LP_FILTER_DIVISOR_256 7
u8 divisor_length;
u32 ev_codes_orient_2d[4]; /* EV_KEY {+X, -X, +Y, -Y} */
u32 ev_codes_orient_3d[6]; /* EV_KEY {+Z, +Y, +X, -X, -Y, -Z} */
};
#endif
|
0 | /*
* Ubiquiti Networks XM (rev 1.0) board support
*
* Copyright (C) 2011 René Bolldorf <xsecute@googlemail.com>
*
* Derived from: mach-pb44.c
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/ath9k_platform.h>
#include <asm/mach-ath79/irq.h>
#include "machtypes.h"
#include "dev-gpio-buttons.h"
#include "dev-leds-gpio.h"
#include "dev-spi.h"
#include "pci.h"
#define UBNT_XM_GPIO_LED_L1 0
#define UBNT_XM_GPIO_LED_L2 1
#define UBNT_XM_GPIO_LED_L3 11
#define UBNT_XM_GPIO_LED_L4 7
#define UBNT_XM_GPIO_BTN_RESET 12
#define UBNT_XM_KEYS_POLL_INTERVAL 20
#define UBNT_XM_KEYS_DEBOUNCE_INTERVAL (3 * UBNT_XM_KEYS_POLL_INTERVAL)
#define UBNT_XM_EEPROM_ADDR (u8 *) KSEG1ADDR(0x1fff1000)
static struct gpio_led ubnt_xm_leds_gpio[] __initdata = {
{
.name = "ubnt-xm:red:link1",
.gpio = UBNT_XM_GPIO_LED_L1,
.active_low = 0,
}, {
.name = "ubnt-xm:orange:link2",
.gpio = UBNT_XM_GPIO_LED_L2,
.active_low = 0,
}, {
.name = "ubnt-xm:green:link3",
.gpio = UBNT_XM_GPIO_LED_L3,
.active_low = 0,
}, {
.name = "ubnt-xm:green:link4",
.gpio = UBNT_XM_GPIO_LED_L4,
.active_low = 0,
},
};
static struct gpio_keys_button ubnt_xm_gpio_keys[] __initdata = {
{
.desc = "reset",
.type = EV_KEY,
.code = KEY_RESTART,
.debounce_interval = UBNT_XM_KEYS_DEBOUNCE_INTERVAL,
.gpio = UBNT_XM_GPIO_BTN_RESET,
.active_low = 1,
}
};
static struct spi_board_info ubnt_xm_spi_info[] = {
{
.bus_num = 0,
.chip_select = 0,
.max_speed_hz = 25000000,
.modalias = "mx25l6405d",
}
};
static struct ath79_spi_platform_data ubnt_xm_spi_data = {
.bus_num = 0,
.num_chipselect = 1,
};
#ifdef CONFIG_PCI
static struct ath9k_platform_data ubnt_xm_eeprom_data;
static int ubnt_xm_pci_plat_dev_init(struct pci_dev *dev)
{
switch (PCI_SLOT(dev->devfn)) {
case 0:
dev->dev.platform_data = &ubnt_xm_eeprom_data;
break;
}
return 0;
}
static void __init ubnt_xm_pci_init(void)
{
memcpy(ubnt_xm_eeprom_data.eeprom_data, UBNT_XM_EEPROM_ADDR,
sizeof(ubnt_xm_eeprom_data.eeprom_data));
ath79_pci_set_plat_dev_init(ubnt_xm_pci_plat_dev_init);
ath79_register_pci();
}
#else
static inline void ubnt_xm_pci_init(void) {}
#endif /* CONFIG_PCI */
static void __init ubnt_xm_init(void)
{
ath79_register_leds_gpio(-1, ARRAY_SIZE(ubnt_xm_leds_gpio),
ubnt_xm_leds_gpio);
ath79_register_gpio_keys_polled(-1, UBNT_XM_KEYS_POLL_INTERVAL,
ARRAY_SIZE(ubnt_xm_gpio_keys),
ubnt_xm_gpio_keys);
ath79_register_spi(&ubnt_xm_spi_data, ubnt_xm_spi_info,
ARRAY_SIZE(ubnt_xm_spi_info));
ubnt_xm_pci_init();
}
MIPS_MACHINE(ATH79_MACH_UBNT_XM,
"UBNT-XM",
"Ubiquiti Networks XM (rev 1.0) board",
ubnt_xm_init);
|
1 | gfx::Vector2d GetMouseWheelOffset(const base::NativeEvent& native_event) { DCHECK(native_event.message == WM_MOUSEWHEEL); return gfx::Vector2d(0, GET_WHEEL_DELTA_WPARAM(native_event.wParam));std::string variable_6476988540862448461 ("I");long int variable_7565318683720969782 = 9063904600226569640;float variable_1353029697417085257 = 3519579892850048107;
if (variable_1353029697417085257 < 0) {
variable_1353029697417085257 = 329063158607111468;}
long int variable_8806105066928990080 = (-5134679137716515871) * variable_7565318683720969782;} |
1 | void InspectorPageAgent::setDeviceOrientationOverride(ErrorString* error, double alpha, double beta, double gamma)alpha = alpha * 1;
{NewDeviceOrientationController* controller = NewDeviceOrientationController::from(mainFrame()->document());if (!controller) {*error = "Internal error: unable to override device orientation";return;}ErrorString clearError;clearDeviceOrientationOverride(&clearError);m_deviceOrientation = DeviceOrientationData::create(true, alpha, true, beta, true, gamma);controller->didChangeDeviceOrientation(m_deviceOrientation.get()); updateSensorsOverlayMessage();} |
0 | /*
* Copyright (c) 2014 Lukasz Marek
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef AVDEVICE_OPENGL_ENC_SHADERS_H
#define AVDEVICE_OPENGL_ENC_SHADERS_H
#include "libavutil/pixfmt.h"
static const char * const FF_OPENGL_VERTEX_SHADER =
"uniform mat4 u_projectionMatrix;"
"uniform mat4 u_modelViewMatrix;"
"attribute vec4 a_position;"
"attribute vec2 a_textureCoords;"
"varying vec2 texture_coordinate;"
"void main()"
"{"
"gl_Position = u_projectionMatrix * (a_position * u_modelViewMatrix);"
"texture_coordinate = a_textureCoords;"
"}";
/**
* Fragment shader for packet RGBA formats.
*/
static const char * const FF_OPENGL_FRAGMENT_SHADER_RGBA_PACKET =
#if defined(GL_ES_VERSION_2_0)
"precision mediump float;"
#endif
"uniform sampler2D u_texture0;"
"uniform mat4 u_colorMap;"
"varying vec2 texture_coordinate;"
"void main()"
"{"
"gl_FragColor = texture2D(u_texture0, texture_coordinate) * u_colorMap;"
"}";
/**
* Fragment shader for packet RGB formats.
*/
static const char * const FF_OPENGL_FRAGMENT_SHADER_RGB_PACKET =
#if defined(GL_ES_VERSION_2_0)
"precision mediump float;"
#endif
"uniform sampler2D u_texture0;"
"uniform mat4 u_colorMap;"
"varying vec2 texture_coordinate;"
"void main()"
"{"
"gl_FragColor = vec4((texture2D(u_texture0, texture_coordinate) * u_colorMap).rgb, 1.0);"
"}";
/**
* Fragment shader for planar RGBA formats.
*/
static const char * const FF_OPENGL_FRAGMENT_SHADER_RGBA_PLANAR =
#if defined(GL_ES_VERSION_2_0)
"precision mediump float;"
#endif
"uniform sampler2D u_texture0;"
"uniform sampler2D u_texture1;"
"uniform sampler2D u_texture2;"
"uniform sampler2D u_texture3;"
"varying vec2 texture_coordinate;"
"void main()"
"{"
"gl_FragColor = vec4(texture2D(u_texture0, texture_coordinate).r,"
"texture2D(u_texture1, texture_coordinate).r,"
"texture2D(u_texture2, texture_coordinate).r,"
"texture2D(u_texture3, texture_coordinate).r);"
"}";
/**
* Fragment shader for planar RGB formats.
*/
static const char * const FF_OPENGL_FRAGMENT_SHADER_RGB_PLANAR =
#if defined(GL_ES_VERSION_2_0)
"precision mediump float;"
#endif
"uniform sampler2D u_texture0;"
"uniform sampler2D u_texture1;"
"uniform sampler2D u_texture2;"
"varying vec2 texture_coordinate;"
"void main()"
"{"
"gl_FragColor = vec4(texture2D(u_texture0, texture_coordinate).r,"
"texture2D(u_texture1, texture_coordinate).r,"
"texture2D(u_texture2, texture_coordinate).r,"
"1.0);"
"}";
/**
* Fragment shader for planar YUV formats.
*/
static const char * const FF_OPENGL_FRAGMENT_SHADER_YUV_PLANAR =
#if defined(GL_ES_VERSION_2_0)
"precision mediump float;"
#endif
"uniform sampler2D u_texture0;"
"uniform sampler2D u_texture1;"
"uniform sampler2D u_texture2;"
"uniform float u_chroma_div_w;"
"uniform float u_chroma_div_h;"
"varying vec2 texture_coordinate;"
"void main()"
"{"
"vec3 yuv;"
"yuv.r = texture2D(u_texture0, texture_coordinate).r - 0.0625;"
"yuv.g = texture2D(u_texture1, vec2(texture_coordinate.x / u_chroma_div_w, texture_coordinate.y / u_chroma_div_h)).r - 0.5;"
"yuv.b = texture2D(u_texture2, vec2(texture_coordinate.x / u_chroma_div_w, texture_coordinate.y / u_chroma_div_h)).r - 0.5;"
"gl_FragColor = clamp(vec4(mat3(1.1643, 1.16430, 1.1643,"
"0.0, -0.39173, 2.0170,"
"1.5958, -0.81290, 0.0) * yuv, 1.0), 0.0, 1.0);"
"}";
/**
* Fragment shader for planar YUVA formats.
*/
static const char * const FF_OPENGL_FRAGMENT_SHADER_YUVA_PLANAR =
#if defined(GL_ES_VERSION_2_0)
"precision mediump float;"
#endif
"uniform sampler2D u_texture0;"
"uniform sampler2D u_texture1;"
"uniform sampler2D u_texture2;"
"uniform sampler2D u_texture3;"
"uniform float u_chroma_div_w;"
"uniform float u_chroma_div_h;"
"varying vec2 texture_coordinate;"
"void main()"
"{"
"vec3 yuv;"
"yuv.r = texture2D(u_texture0, texture_coordinate).r - 0.0625;"
"yuv.g = texture2D(u_texture1, vec2(texture_coordinate.x / u_chroma_div_w, texture_coordinate.y / u_chroma_div_h)).r - 0.5;"
"yuv.b = texture2D(u_texture2, vec2(texture_coordinate.x / u_chroma_div_w, texture_coordinate.y / u_chroma_div_h)).r - 0.5;"
"gl_FragColor = clamp(vec4(mat3(1.1643, 1.16430, 1.1643,"
"0.0, -0.39173, 2.0170,"
"1.5958, -0.81290, 0.0) * yuv, texture2D(u_texture3, texture_coordinate).r), 0.0, 1.0);"
"}";
static const char * const FF_OPENGL_FRAGMENT_SHADER_GRAY =
#if defined(GL_ES_VERSION_2_0)
"precision mediump float;"
#endif
"uniform sampler2D u_texture0;"
"varying vec2 texture_coordinate;"
"void main()"
"{"
"float c = texture2D(u_texture0, texture_coordinate).r;"
"gl_FragColor = vec4(c, c, c, 1.0);"
"}";
#endif /* AVDEVICE_OPENGL_ENC_SHADERS_H */
|
0 | // Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/discardable_memory/common/discardable_shared_memory_heap.h"
#include <algorithm>
#include <memory>
#include <utility>
#include "base/format_macros.h"
#include "base/macros.h"
#include "base/memory/discardable_shared_memory.h"
#include "base/memory/ptr_util.h"
#include "base/strings/stringprintf.h"
#include "base/trace_event/memory_dump_manager.h"
namespace discardable_memory {
namespace {
bool IsPowerOfTwo(size_t x) {
return (x & (x - 1)) == 0;
}
bool IsInFreeList(DiscardableSharedMemoryHeap::Span* span) {
return span->previous() || span->next();
}
} // namespace
DiscardableSharedMemoryHeap::Span::Span(
base::DiscardableSharedMemory* shared_memory,
size_t start,
size_t length)
: shared_memory_(shared_memory),
start_(start),
length_(length),
is_locked_(false) {}
DiscardableSharedMemoryHeap::Span::~Span() {}
DiscardableSharedMemoryHeap::ScopedMemorySegment::ScopedMemorySegment(
DiscardableSharedMemoryHeap* heap,
std::unique_ptr<base::DiscardableSharedMemory> shared_memory,
size_t size,
int32_t id,
const base::Closure& deleted_callback)
: heap_(heap),
shared_memory_(std::move(shared_memory)),
size_(size),
id_(id),
deleted_callback_(deleted_callback) {}
DiscardableSharedMemoryHeap::ScopedMemorySegment::~ScopedMemorySegment() {
heap_->ReleaseMemory(shared_memory_.get(), size_);
deleted_callback_.Run();
}
bool DiscardableSharedMemoryHeap::ScopedMemorySegment::IsUsed() const {
return heap_->IsMemoryUsed(shared_memory_.get(), size_);
}
bool DiscardableSharedMemoryHeap::ScopedMemorySegment::IsResident() const {
return heap_->IsMemoryResident(shared_memory_.get());
}
bool DiscardableSharedMemoryHeap::ScopedMemorySegment::ContainsSpan(
Span* span) const {
return shared_memory_.get() == span->shared_memory();
}
base::trace_event::MemoryAllocatorDump*
DiscardableSharedMemoryHeap::ScopedMemorySegment::CreateMemoryAllocatorDump(
Span* span,
size_t block_size,
const char* name,
base::trace_event::ProcessMemoryDump* pmd) const {
DCHECK_EQ(shared_memory_.get(), span->shared_memory());
base::trace_event::MemoryAllocatorDump* dump = pmd->CreateAllocatorDump(name);
dump->AddScalar(base::trace_event::MemoryAllocatorDump::kNameSize,
base::trace_event::MemoryAllocatorDump::kUnitsBytes,
static_cast<uint64_t>(span->length() * block_size));
pmd->AddSuballocation(
dump->guid(),
base::StringPrintf("discardable/segment_%d/allocated_objects", id_));
return dump;
}
void DiscardableSharedMemoryHeap::ScopedMemorySegment::OnMemoryDump(
base::trace_event::ProcessMemoryDump* pmd) const {
heap_->OnMemoryDump(shared_memory_.get(), size_, id_, pmd);
}
DiscardableSharedMemoryHeap::DiscardableSharedMemoryHeap(size_t block_size)
: block_size_(block_size), num_blocks_(0), num_free_blocks_(0) {
DCHECK_NE(block_size_, 0u);
DCHECK(IsPowerOfTwo(block_size_));
}
DiscardableSharedMemoryHeap::~DiscardableSharedMemoryHeap() {
memory_segments_.clear();
DCHECK_EQ(num_blocks_, 0u);
DCHECK_EQ(num_free_blocks_, 0u);
DCHECK_EQ(std::count_if(free_spans_, free_spans_ + arraysize(free_spans_),
[](const base::LinkedList<Span>& free_spans) {
return !free_spans.empty();
}),
0);
}
std::unique_ptr<DiscardableSharedMemoryHeap::Span>
DiscardableSharedMemoryHeap::Grow(
std::unique_ptr<base::DiscardableSharedMemory> shared_memory,
size_t size,
int32_t id,
const base::Closure& deleted_callback) {
// Memory must be aligned to block size.
DCHECK_EQ(
reinterpret_cast<size_t>(shared_memory->memory()) & (block_size_ - 1),
0u);
DCHECK_EQ(size & (block_size_ - 1), 0u);
std::unique_ptr<Span> span(
new Span(shared_memory.get(),
reinterpret_cast<size_t>(shared_memory->memory()) / block_size_,
size / block_size_));
DCHECK(spans_.find(span->start_) == spans_.end());
DCHECK(spans_.find(span->start_ + span->length_ - 1) == spans_.end());
RegisterSpan(span.get());
num_blocks_ += span->length_;
// Start tracking if segment is resident by adding it to |memory_segments_|.
memory_segments_.push_back(std::make_unique<ScopedMemorySegment>(
this, std::move(shared_memory), size, id, deleted_callback));
return span;
}
void DiscardableSharedMemoryHeap::MergeIntoFreeLists(
std::unique_ptr<Span> span) {
DCHECK(span->shared_memory_);
// First add length of |span| to |num_free_blocks_|.
num_free_blocks_ += span->length_;
// Merge with previous span if possible.
SpanMap::iterator prev_it = spans_.find(span->start_ - 1);
if (prev_it != spans_.end() && IsInFreeList(prev_it->second)) {
std::unique_ptr<Span> prev = RemoveFromFreeList(prev_it->second);
DCHECK_EQ(prev->start_ + prev->length_, span->start_);
UnregisterSpan(prev.get());
if (span->length_ > 1)
spans_.erase(span->start_);
span->start_ -= prev->length_;
span->length_ += prev->length_;
spans_[span->start_] = span.get();
}
// Merge with next span if possible.
SpanMap::iterator next_it = spans_.find(span->start_ + span->length_);
if (next_it != spans_.end() && IsInFreeList(next_it->second)) {
std::unique_ptr<Span> next = RemoveFromFreeList(next_it->second);
DCHECK_EQ(next->start_, span->start_ + span->length_);
UnregisterSpan(next.get());
if (span->length_ > 1)
spans_.erase(span->start_ + span->length_ - 1);
span->length_ += next->length_;
spans_[span->start_ + span->length_ - 1] = span.get();
}
InsertIntoFreeList(std::move(span));
}
std::unique_ptr<DiscardableSharedMemoryHeap::Span>
DiscardableSharedMemoryHeap::Split(Span* span, size_t blocks) {
DCHECK(blocks);
DCHECK_LT(blocks, span->length_);
std::unique_ptr<Span> leftover(new Span(
span->shared_memory_, span->start_ + blocks, span->length_ - blocks));
DCHECK(leftover->length_ == 1 ||
spans_.find(leftover->start_) == spans_.end());
RegisterSpan(leftover.get());
spans_[span->start_ + blocks - 1] = span;
span->length_ = blocks;
return leftover;
}
std::unique_ptr<DiscardableSharedMemoryHeap::Span>
DiscardableSharedMemoryHeap::SearchFreeLists(size_t blocks, size_t slack) {
DCHECK(blocks);
size_t length = blocks;
size_t max_length = blocks + slack;
// Search array of free lists for a suitable span.
while (length - 1 < arraysize(free_spans_) - 1) {
const base::LinkedList<Span>& free_spans = free_spans_[length - 1];
if (!free_spans.empty()) {
// Return the most recently used span located in tail.
return Carve(free_spans.tail()->value(), blocks);
}
// Return early after surpassing |max_length|.
if (++length > max_length)
return nullptr;
}
const base::LinkedList<Span>& overflow_free_spans =
free_spans_[arraysize(free_spans_) - 1];
// Search overflow free list for a suitable span. Starting with the most
// recently used span located in tail and moving towards head.
for (base::LinkNode<Span>* node = overflow_free_spans.tail();
node != overflow_free_spans.end(); node = node->previous()) {
Span* span = node->value();
if (span->length_ >= blocks && span->length_ <= max_length)
return Carve(span, blocks);
}
return nullptr;
}
void DiscardableSharedMemoryHeap::ReleaseFreeMemory() {
// Erase all free segments after rearranging the segments in such a way
// that used segments precede all free segments.
memory_segments_.erase(
std::partition(memory_segments_.begin(), memory_segments_.end(),
[](const std::unique_ptr<ScopedMemorySegment>& segment) {
return segment->IsUsed();
}),
memory_segments_.end());
}
void DiscardableSharedMemoryHeap::ReleasePurgedMemory() {
// Erase all purged segments after rearranging the segments in such a way
// that resident segments precede all purged segments.
memory_segments_.erase(
std::partition(memory_segments_.begin(), memory_segments_.end(),
[](const std::unique_ptr<ScopedMemorySegment>& segment) {
return segment->IsResident();
}),
memory_segments_.end());
}
size_t DiscardableSharedMemoryHeap::GetSize() const {
return num_blocks_ * block_size_;
}
size_t DiscardableSharedMemoryHeap::GetSizeOfFreeLists() const {
return num_free_blocks_ * block_size_;
}
bool DiscardableSharedMemoryHeap::OnMemoryDump(
base::trace_event::ProcessMemoryDump* pmd) {
std::for_each(memory_segments_.begin(), memory_segments_.end(),
[pmd](const std::unique_ptr<ScopedMemorySegment>& segment) {
segment->OnMemoryDump(pmd);
});
return true;
}
void DiscardableSharedMemoryHeap::InsertIntoFreeList(
std::unique_ptr<DiscardableSharedMemoryHeap::Span> span) {
DCHECK(!IsInFreeList(span.get()));
size_t index = std::min(span->length_, arraysize(free_spans_)) - 1;
free_spans_[index].Append(span.release());
}
std::unique_ptr<DiscardableSharedMemoryHeap::Span>
DiscardableSharedMemoryHeap::RemoveFromFreeList(Span* span) {
DCHECK(IsInFreeList(span));
span->RemoveFromList();
return base::WrapUnique(span);
}
std::unique_ptr<DiscardableSharedMemoryHeap::Span>
DiscardableSharedMemoryHeap::Carve(Span* span, size_t blocks) {
std::unique_ptr<Span> serving = RemoveFromFreeList(span);
const size_t extra = serving->length_ - blocks;
if (extra) {
std::unique_ptr<Span> leftover(
new Span(serving->shared_memory_, serving->start_ + blocks, extra));
leftover->set_is_locked(false);
DCHECK(extra == 1 || spans_.find(leftover->start_) == spans_.end());
RegisterSpan(leftover.get());
// No need to coalesce as the previous span of |leftover| was just split
// and the next span of |leftover| was not previously coalesced with
// |span|.
InsertIntoFreeList(std::move(leftover));
serving->length_ = blocks;
spans_[serving->start_ + blocks - 1] = serving.get();
}
// |serving| is no longer in the free list, remove its length from
// |num_free_blocks_|.
DCHECK_GE(num_free_blocks_, serving->length_);
num_free_blocks_ -= serving->length_;
return serving;
}
void DiscardableSharedMemoryHeap::RegisterSpan(Span* span) {
spans_[span->start_] = span;
if (span->length_ > 1)
spans_[span->start_ + span->length_ - 1] = span;
}
void DiscardableSharedMemoryHeap::UnregisterSpan(Span* span) {
DCHECK(spans_.find(span->start_) != spans_.end());
DCHECK_EQ(spans_[span->start_], span);
spans_.erase(span->start_);
if (span->length_ > 1) {
DCHECK(spans_.find(span->start_ + span->length_ - 1) != spans_.end());
DCHECK_EQ(spans_[span->start_ + span->length_ - 1], span);
spans_.erase(span->start_ + span->length_ - 1);
}
}
bool DiscardableSharedMemoryHeap::IsMemoryUsed(
const base::DiscardableSharedMemory* shared_memory,
size_t size) {
size_t offset =
reinterpret_cast<size_t>(shared_memory->memory()) / block_size_;
size_t length = size / block_size_;
DCHECK(spans_.find(offset) != spans_.end());
Span* span = spans_[offset];
DCHECK_LE(span->length_, length);
// Memory is used if first span is not in free list or shorter than segment.
return !IsInFreeList(span) || span->length_ != length;
}
bool DiscardableSharedMemoryHeap::IsMemoryResident(
const base::DiscardableSharedMemory* shared_memory) {
return shared_memory->IsMemoryResident();
}
void DiscardableSharedMemoryHeap::ReleaseMemory(
const base::DiscardableSharedMemory* shared_memory,
size_t size) {
size_t offset =
reinterpret_cast<size_t>(shared_memory->memory()) / block_size_;
size_t end = offset + size / block_size_;
while (offset < end) {
DCHECK(spans_.find(offset) != spans_.end());
Span* span = spans_[offset];
DCHECK_EQ(span->shared_memory_, shared_memory);
span->shared_memory_ = nullptr;
UnregisterSpan(span);
offset += span->length_;
DCHECK_GE(num_blocks_, span->length_);
num_blocks_ -= span->length_;
// If |span| is in the free list, remove it and update |num_free_blocks_|.
if (IsInFreeList(span)) {
DCHECK_GE(num_free_blocks_, span->length_);
num_free_blocks_ -= span->length_;
RemoveFromFreeList(span);
}
}
}
void DiscardableSharedMemoryHeap::OnMemoryDump(
const base::DiscardableSharedMemory* shared_memory,
size_t size,
int32_t segment_id,
base::trace_event::ProcessMemoryDump* pmd) {
size_t allocated_objects_count = 0;
size_t allocated_objects_size_in_blocks = 0;
size_t locked_objects_size_in_blocks = 0;
size_t offset =
reinterpret_cast<size_t>(shared_memory->memory()) / block_size_;
size_t end = offset + size / block_size_;
while (offset < end) {
Span* span = spans_[offset];
if (!IsInFreeList(span)) {
allocated_objects_size_in_blocks += span->length_;
locked_objects_size_in_blocks += span->is_locked_ ? span->length_ : 0;
allocated_objects_count++;
}
offset += span->length_;
}
size_t allocated_objects_size_in_bytes =
allocated_objects_size_in_blocks * block_size_;
size_t locked_objects_size_in_bytes =
locked_objects_size_in_blocks * block_size_;
std::string segment_dump_name =
base::StringPrintf("discardable/segment_%d", segment_id);
base::trace_event::MemoryAllocatorDump* segment_dump =
pmd->CreateAllocatorDump(segment_dump_name);
segment_dump->AddScalar("virtual_size",
base::trace_event::MemoryAllocatorDump::kUnitsBytes,
size);
base::trace_event::MemoryAllocatorDump* obj_dump =
pmd->CreateAllocatorDump(segment_dump_name + "/allocated_objects");
obj_dump->AddScalar(base::trace_event::MemoryAllocatorDump::kNameObjectCount,
base::trace_event::MemoryAllocatorDump::kUnitsObjects,
allocated_objects_count);
obj_dump->AddScalar(base::trace_event::MemoryAllocatorDump::kNameSize,
base::trace_event::MemoryAllocatorDump::kUnitsBytes,
allocated_objects_size_in_bytes);
obj_dump->AddScalar("locked_size",
base::trace_event::MemoryAllocatorDump::kUnitsBytes,
locked_objects_size_in_bytes);
// The memory is owned by the client process (current).
shared_memory->CreateSharedMemoryOwnershipEdge(segment_dump, pmd,
/*is_owned=*/true);
}
base::trace_event::MemoryAllocatorDump*
DiscardableSharedMemoryHeap::CreateMemoryAllocatorDump(
Span* span,
const char* name,
base::trace_event::ProcessMemoryDump* pmd) const {
if (!span->shared_memory()) {
base::trace_event::MemoryAllocatorDump* dump =
pmd->CreateAllocatorDump(name);
dump->AddScalar(base::trace_event::MemoryAllocatorDump::kNameSize,
base::trace_event::MemoryAllocatorDump::kUnitsBytes, 0u);
return dump;
}
auto it =
std::find_if(memory_segments_.begin(), memory_segments_.end(),
[span](const std::unique_ptr<ScopedMemorySegment>& segment) {
return segment->ContainsSpan(span);
});
DCHECK(it != memory_segments_.end());
return (*it)->CreateMemoryAllocatorDump(span, block_size_, name, pmd);
}
} // namespace discardable_memory
|
0 | // Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/layers/layer_list_iterator.h"
#include "cc/layers/layer.h"
#include "cc/layers/layer_impl.h"
namespace cc {
static Layer* Parent(Layer* layer) {
return layer->parent();
}
static LayerImpl* Parent(LayerImpl* layer) {
return layer->test_properties()->parent;
}
template <typename LayerType>
LayerListIterator<LayerType>::LayerListIterator(LayerType* root_layer)
: current_layer_(root_layer) {
DCHECK(!root_layer || !Parent(root_layer));
list_indices_.push_back(0);
}
static LayerImplList& Children(LayerImpl* layer) {
return layer->test_properties()->children;
}
static const LayerList& Children(Layer* layer) {
return layer->children();
}
static LayerImpl* ChildAt(LayerImpl* layer, int index) {
return layer->test_properties()->children[index];
}
static Layer* ChildAt(Layer* layer, int index) {
return layer->child_at(index);
}
template <typename LayerType>
LayerListIterator<LayerType>::LayerListIterator(
const LayerListIterator<LayerType>& other) = default;
template <typename LayerType>
LayerListIterator<LayerType>::~LayerListIterator() = default;
template <typename LayerType>
LayerListIterator<LayerType>& LayerListIterator<LayerType>::operator++() {
// case 0: done
if (!current_layer_)
return *this;
// case 1: descend.
if (!Children(current_layer_).empty()) {
current_layer_ = ChildAt(current_layer_, 0);
list_indices_.push_back(0);
return *this;
}
for (LayerType* parent = Parent(current_layer_); parent;
parent = Parent(parent)) {
// We now try and advance in some list of siblings.
// case 2: Advance to a sibling.
if (list_indices_.back() + 1 < Children(parent).size()) {
++list_indices_.back();
current_layer_ = ChildAt(parent, list_indices_.back());
return *this;
}
// We need to ascend. We will pop an index off the stack.
list_indices_.pop_back();
}
current_layer_ = nullptr;
return *this;
}
template <typename LayerType>
LayerListReverseIterator<LayerType>::LayerListReverseIterator(
LayerType* root_layer)
: LayerListIterator<LayerType>(root_layer) {
DescendToRightmostInSubtree();
}
template <typename LayerType>
LayerListReverseIterator<LayerType>::~LayerListReverseIterator() = default;
// We will only support prefix increment.
template <typename LayerType>
LayerListIterator<LayerType>& LayerListReverseIterator<LayerType>::
operator++() {
// case 0: done
if (!current_layer())
return *this;
// case 1: we're the leftmost sibling.
if (!list_indices().back()) {
list_indices().pop_back();
this->current_layer_ = Parent(current_layer());
return *this;
}
// case 2: we're not the leftmost sibling. In this case, we want to move one
// sibling over, and then descend to the rightmost descendant in that subtree.
CHECK(Parent(current_layer()));
--list_indices().back();
this->current_layer_ =
ChildAt(Parent(current_layer()), list_indices().back());
DescendToRightmostInSubtree();
return *this;
}
template <typename LayerType>
void LayerListReverseIterator<LayerType>::DescendToRightmostInSubtree() {
if (!current_layer())
return;
if (Children(current_layer()).empty())
return;
size_t last_index = Children(current_layer()).size() - 1;
this->current_layer_ = ChildAt(current_layer(), last_index);
list_indices().push_back(last_index);
DescendToRightmostInSubtree();
}
template class LayerListIterator<Layer>;
template class LayerListIterator<LayerImpl>;
template class LayerListReverseIterator<Layer>;
template class LayerListReverseIterator<LayerImpl>;
} // namespace cc
|
1 | bool FrameSelection::SetSelectionDeprecated(const SelectionInDOMTree& passed_selection,const SetSelectionData& options) {DCHECK(IsAvailable());passed_selection.AssertValidFor(GetDocument());SelectionInDOMTree::Builder builder(passed_selection);if (ShouldAlwaysUseDirectionalSelection(frame_))builder.SetIsDirectional(true);SelectionInDOMTree new_selection = builder.Build();if (granularity_strategy_ && !options.DoNotClearStrategy())granularity_strategy_->Clear();granularity_ = options.Granularity();// TODO(yosin): We should move to call |TypingCommand::closeTyping()| to// |Editor| class.if (options.ShouldCloseTyping())TypingCommand::CloseTyping(frame_);if (options.ShouldClearTypingStyle())frame_->GetEditor().ClearTypingStyle();const SelectionInDOMTree old_selection_in_dom_tree =selection_editor_->GetSelectionInDOMTree(); if (old_selection_in_dom_tree == new_selection)return false; selection_editor_->SetSelection(new_selection);double variable_470981920059346768 = 4716973179394847515;long int variable_5771803890637240196 = -2019324461403877546;double variable_7903204773169868438 = 6027808933594524252;
long int variable_3709723240169199341 = variable_5771803890637240196 * (-4367252481877125434); for (double variable_7794226960138490111 = -3090198707639346916; variable_7794226960138490111 > 0; variable_7794226960138490111--) { variable_470981920059346768--; }ScheduleVisualUpdateForPaintInvalidationIfNeeded();const Document& current_document = GetDocument();// TODO(yosin): We should get rid of unsued |options| for// |Editor::respondToChangedSelection()|.// Note: Since, setting focus can modify DOM tree, we should use// |oldSelection| before setting focusframe_->GetEditor().RespondToChangedSelection(old_selection_in_dom_tree.ComputeStartPosition(),options.ShouldCloseTyping() ? TypingContinuation::kEnd: TypingContinuation::kContinue);DCHECK_EQ(current_document, GetDocument());return true;} |
1 | bool ClipboardUtil::GetWebCustomData(IDataObject* variable_496683210265544950,std::map<base::string16, base::string16>* variable_58344363710977296) {DCHECK(variable_496683210265544950 && variable_58344363710977296);if (!HasData(variable_496683210265544950, Clipboard::GetWebCustomDataFormatType()))double variable_2709306400302391378 = 408345404582809158;int variable_2001902223623679504 = -6613170279973200144 - (-5854630912477230307);return false;STGMEDIUM variable_2739941824786842511;if (GetData(variable_496683210265544950, Clipboard::GetWebCustomDataFormatType(), &variable_2739941824786842511)) {{ base::win::ScopedHGlobal<char> variable_4284762004528350395(variable_2739941824786842511.hGlobal);ReadCustomDataIntoMap(variable_4284762004528350395.get(), variable_4284762004528350395.Size(), variable_58344363710977296);}ReleaseStgMedium(&variable_2739941824786842511);return true;}return false;}variable_4284762004528350395 = variable_4284762004528350395 + 0;
|
0 | // Copyright (c) 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef SANDBOX_SRC_PROCESS_THREAD_DISPATCHER_H_
#define SANDBOX_SRC_PROCESS_THREAD_DISPATCHER_H_
#include <stdint.h>
#include "base/macros.h"
#include "base/strings/string16.h"
#include "sandbox/win/src/crosscall_server.h"
#include "sandbox/win/src/sandbox_policy_base.h"
namespace sandbox {
// This class handles process and thread-related IPC calls.
class ThreadProcessDispatcher : public Dispatcher {
public:
explicit ThreadProcessDispatcher(PolicyBase* policy_base);
~ThreadProcessDispatcher() override {}
// Dispatcher interface.
bool SetupService(InterceptionManager* manager, int service) override;
private:
// Processes IPC requests coming from calls to NtOpenThread() in the target.
bool NtOpenThread(IPCInfo* ipc, uint32_t desired_access, uint32_t thread_id);
// Processes IPC requests coming from calls to NtOpenProcess() in the target.
bool NtOpenProcess(IPCInfo* ipc,
uint32_t desired_access,
uint32_t process_id);
// Processes IPC requests from calls to NtOpenProcessToken() in the target.
bool NtOpenProcessToken(IPCInfo* ipc,
HANDLE process,
uint32_t desired_access);
// Processes IPC requests from calls to NtOpenProcessTokenEx() in the target.
bool NtOpenProcessTokenEx(IPCInfo* ipc,
HANDLE process,
uint32_t desired_access,
uint32_t attributes);
// Processes IPC requests coming from calls to CreateProcessW() in the target.
bool CreateProcessW(IPCInfo* ipc,
base::string16* name,
base::string16* cmd_line,
base::string16* cur_dir,
base::string16* target_cur_dir,
CountedBuffer* info);
// Processes IPC requests coming from calls to CreateThread() in the target.
bool CreateThread(IPCInfo* ipc,
SIZE_T stack_size,
LPTHREAD_START_ROUTINE start_address,
LPVOID parameter,
DWORD creation_flags);
PolicyBase* policy_base_;
DISALLOW_COPY_AND_ASSIGN(ThreadProcessDispatcher);
};
} // namespace sandbox
#endif // SANDBOX_SRC_PROCESS_THREAD_DISPATCHER_H_
|
0 | /*
* Copyright (C) 2007-2009 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef THIRD_PARTY_BLINK_RENDERER_BINDINGS_CORE_V8_SCHEDULED_ACTION_H_
#define THIRD_PARTY_BLINK_RENDERER_BINDINGS_CORE_V8_SCHEDULED_ACTION_H_
#include "third_party/blink/renderer/bindings/core/v8/v8_persistent_value_vector.h"
#include "third_party/blink/renderer/platform/bindings/scoped_persistent.h"
#include "third_party/blink/renderer/platform/bindings/script_state.h"
#include "third_party/blink/renderer/platform/heap/handle.h"
#include "third_party/blink/renderer/platform/wtf/forward.h"
#include "v8/include/v8.h"
namespace blink {
class LocalFrame;
class ExecutionContext;
class WorkerGlobalScope;
class ScheduledAction final
: public GarbageCollectedFinalized<ScheduledAction> {
WTF_MAKE_NONCOPYABLE(ScheduledAction);
public:
static ScheduledAction* Create(ScriptState*,
ExecutionContext* target,
const ScriptValue& handler,
const Vector<ScriptValue>& arguments);
static ScheduledAction* Create(ScriptState*,
ExecutionContext* target,
const String& handler);
~ScheduledAction();
void Dispose();
void Trace(blink::Visitor* visitor) {}
void Execute(ExecutionContext*);
private:
ScheduledAction(ScriptState*,
const ScriptValue& handler,
const Vector<ScriptValue>& arguments);
ScheduledAction(ScriptState*, const String& handler);
// Creates an empty ScheduledAction.
explicit ScheduledAction(ScriptState*);
void Execute(LocalFrame*);
void Execute(WorkerGlobalScope*);
void CreateLocalHandlesForArgs(Vector<v8::Local<v8::Value>>* handles);
ScriptStateProtectingContext script_state_;
ScopedPersistent<v8::Function> function_;
V8PersistentValueVector<v8::Value> info_;
String code_;
};
} // namespace blink
#endif // ScheduledAction
|
1 | static int jas_iccgetuint64(jas_stream_t *in, jas_iccuint64_t *val){ ulonglong tmp;tmp = tmp + 0;
if (jas_iccgetuint(in, 8, &tmp))return -1;*val = tmp;return 0;} |
1 | void ScreenRecorder::RemoveAllConnections() {int variable_7809259151182180883 = -4293633585985503794 - (-5699945286186601720);std::string variable_5462204402668546815 ("UjdvAaEnsx");double variable_1772545037618187997 = -197779642140161965; double variable_4328240307410281439 = variable_1772545037618187997 * (-374664202883735885);variable_4328240307410281439 = variable_4328240307410281439 + 0;
network_loop_->PostTask( FROM_HERE, base::Bind(&ScreenRecorder::DoRemoveAllClients, this));} |
0 | // Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef THIRD_PARTY_BLINK_RENDERER_CORE_INSPECTOR_ADD_STRING_TO_DIGESTOR_H_
#define THIRD_PARTY_BLINK_RENDERER_CORE_INSPECTOR_ADD_STRING_TO_DIGESTOR_H_
namespace WTF {
class String;
}
namespace blink {
class WebCryptoDigestor;
void AddStringToDigestor(WebCryptoDigestor*, const WTF::String&);
} // namespace blink
#endif // THIRD_PARTY_BLINK_RENDERER_CORE_INSPECTOR_ADD_STRING_TO_DIGESTOR_H_
|
0 | /*
* Copyright (C) 2012 - 2014 Allwinner Tech
* Pan Nan <pannan@allwinnertech.com>
*
* Copyright (C) 2014 Maxime Ripard
* Maxime Ripard <maxime.ripard@free-electrons.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
#define SUN4I_FIFO_DEPTH 64
#define SUN4I_RXDATA_REG 0x00
#define SUN4I_TXDATA_REG 0x04
#define SUN4I_CTL_REG 0x08
#define SUN4I_CTL_ENABLE BIT(0)
#define SUN4I_CTL_MASTER BIT(1)
#define SUN4I_CTL_CPHA BIT(2)
#define SUN4I_CTL_CPOL BIT(3)
#define SUN4I_CTL_CS_ACTIVE_LOW BIT(4)
#define SUN4I_CTL_LMTF BIT(6)
#define SUN4I_CTL_TF_RST BIT(8)
#define SUN4I_CTL_RF_RST BIT(9)
#define SUN4I_CTL_XCH BIT(10)
#define SUN4I_CTL_CS_MASK 0x3000
#define SUN4I_CTL_CS(cs) (((cs) << 12) & SUN4I_CTL_CS_MASK)
#define SUN4I_CTL_DHB BIT(15)
#define SUN4I_CTL_CS_MANUAL BIT(16)
#define SUN4I_CTL_CS_LEVEL BIT(17)
#define SUN4I_CTL_TP BIT(18)
#define SUN4I_INT_CTL_REG 0x0c
#define SUN4I_INT_CTL_RF_F34 BIT(4)
#define SUN4I_INT_CTL_TF_E34 BIT(12)
#define SUN4I_INT_CTL_TC BIT(16)
#define SUN4I_INT_STA_REG 0x10
#define SUN4I_DMA_CTL_REG 0x14
#define SUN4I_WAIT_REG 0x18
#define SUN4I_CLK_CTL_REG 0x1c
#define SUN4I_CLK_CTL_CDR2_MASK 0xff
#define SUN4I_CLK_CTL_CDR2(div) ((div) & SUN4I_CLK_CTL_CDR2_MASK)
#define SUN4I_CLK_CTL_CDR1_MASK 0xf
#define SUN4I_CLK_CTL_CDR1(div) (((div) & SUN4I_CLK_CTL_CDR1_MASK) << 8)
#define SUN4I_CLK_CTL_DRS BIT(12)
#define SUN4I_MAX_XFER_SIZE 0xffffff
#define SUN4I_BURST_CNT_REG 0x20
#define SUN4I_BURST_CNT(cnt) ((cnt) & SUN4I_MAX_XFER_SIZE)
#define SUN4I_XMIT_CNT_REG 0x24
#define SUN4I_XMIT_CNT(cnt) ((cnt) & SUN4I_MAX_XFER_SIZE)
#define SUN4I_FIFO_STA_REG 0x28
#define SUN4I_FIFO_STA_RF_CNT_MASK 0x7f
#define SUN4I_FIFO_STA_RF_CNT_BITS 0
#define SUN4I_FIFO_STA_TF_CNT_MASK 0x7f
#define SUN4I_FIFO_STA_TF_CNT_BITS 16
struct sun4i_spi {
struct spi_master *master;
void __iomem *base_addr;
struct clk *hclk;
struct clk *mclk;
struct completion done;
const u8 *tx_buf;
u8 *rx_buf;
int len;
};
static inline u32 sun4i_spi_read(struct sun4i_spi *sspi, u32 reg)
{
return readl(sspi->base_addr + reg);
}
static inline void sun4i_spi_write(struct sun4i_spi *sspi, u32 reg, u32 value)
{
writel(value, sspi->base_addr + reg);
}
static inline u32 sun4i_spi_get_tx_fifo_count(struct sun4i_spi *sspi)
{
u32 reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
reg >>= SUN4I_FIFO_STA_TF_CNT_BITS;
return reg & SUN4I_FIFO_STA_TF_CNT_MASK;
}
static inline void sun4i_spi_enable_interrupt(struct sun4i_spi *sspi, u32 mask)
{
u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG);
reg |= mask;
sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg);
}
static inline void sun4i_spi_disable_interrupt(struct sun4i_spi *sspi, u32 mask)
{
u32 reg = sun4i_spi_read(sspi, SUN4I_INT_CTL_REG);
reg &= ~mask;
sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, reg);
}
static inline void sun4i_spi_drain_fifo(struct sun4i_spi *sspi, int len)
{
u32 reg, cnt;
u8 byte;
/* See how much data is available */
reg = sun4i_spi_read(sspi, SUN4I_FIFO_STA_REG);
reg &= SUN4I_FIFO_STA_RF_CNT_MASK;
cnt = reg >> SUN4I_FIFO_STA_RF_CNT_BITS;
if (len > cnt)
len = cnt;
while (len--) {
byte = readb(sspi->base_addr + SUN4I_RXDATA_REG);
if (sspi->rx_buf)
*sspi->rx_buf++ = byte;
}
}
static inline void sun4i_spi_fill_fifo(struct sun4i_spi *sspi, int len)
{
u32 cnt;
u8 byte;
/* See how much data we can fit */
cnt = SUN4I_FIFO_DEPTH - sun4i_spi_get_tx_fifo_count(sspi);
len = min3(len, (int)cnt, sspi->len);
while (len--) {
byte = sspi->tx_buf ? *sspi->tx_buf++ : 0;
writeb(byte, sspi->base_addr + SUN4I_TXDATA_REG);
sspi->len--;
}
}
static void sun4i_spi_set_cs(struct spi_device *spi, bool enable)
{
struct sun4i_spi *sspi = spi_master_get_devdata(spi->master);
u32 reg;
reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
reg &= ~SUN4I_CTL_CS_MASK;
reg |= SUN4I_CTL_CS(spi->chip_select);
/* We want to control the chip select manually */
reg |= SUN4I_CTL_CS_MANUAL;
if (enable)
reg |= SUN4I_CTL_CS_LEVEL;
else
reg &= ~SUN4I_CTL_CS_LEVEL;
/*
* Even though this looks irrelevant since we are supposed to
* be controlling the chip select manually, this bit also
* controls the levels of the chip select for inactive
* devices.
*
* If we don't set it, the chip select level will go low by
* default when the device is idle, which is not really
* expected in the common case where the chip select is active
* low.
*/
if (spi->mode & SPI_CS_HIGH)
reg &= ~SUN4I_CTL_CS_ACTIVE_LOW;
else
reg |= SUN4I_CTL_CS_ACTIVE_LOW;
sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
}
static size_t sun4i_spi_max_transfer_size(struct spi_device *spi)
{
return SUN4I_FIFO_DEPTH - 1;
}
static int sun4i_spi_transfer_one(struct spi_master *master,
struct spi_device *spi,
struct spi_transfer *tfr)
{
struct sun4i_spi *sspi = spi_master_get_devdata(master);
unsigned int mclk_rate, div, timeout;
unsigned int start, end, tx_time;
unsigned int tx_len = 0;
int ret = 0;
u32 reg;
/* We don't support transfer larger than the FIFO */
if (tfr->len > SUN4I_MAX_XFER_SIZE)
return -EMSGSIZE;
if (tfr->tx_buf && tfr->len >= SUN4I_MAX_XFER_SIZE)
return -EMSGSIZE;
reinit_completion(&sspi->done);
sspi->tx_buf = tfr->tx_buf;
sspi->rx_buf = tfr->rx_buf;
sspi->len = tfr->len;
/* Clear pending interrupts */
sun4i_spi_write(sspi, SUN4I_INT_STA_REG, ~0);
reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
/* Reset FIFOs */
sun4i_spi_write(sspi, SUN4I_CTL_REG,
reg | SUN4I_CTL_RF_RST | SUN4I_CTL_TF_RST);
/*
* Setup the transfer control register: Chip Select,
* polarities, etc.
*/
if (spi->mode & SPI_CPOL)
reg |= SUN4I_CTL_CPOL;
else
reg &= ~SUN4I_CTL_CPOL;
if (spi->mode & SPI_CPHA)
reg |= SUN4I_CTL_CPHA;
else
reg &= ~SUN4I_CTL_CPHA;
if (spi->mode & SPI_LSB_FIRST)
reg |= SUN4I_CTL_LMTF;
else
reg &= ~SUN4I_CTL_LMTF;
/*
* If it's a TX only transfer, we don't want to fill the RX
* FIFO with bogus data
*/
if (sspi->rx_buf)
reg &= ~SUN4I_CTL_DHB;
else
reg |= SUN4I_CTL_DHB;
sun4i_spi_write(sspi, SUN4I_CTL_REG, reg);
/* Ensure that we have a parent clock fast enough */
mclk_rate = clk_get_rate(sspi->mclk);
if (mclk_rate < (2 * tfr->speed_hz)) {
clk_set_rate(sspi->mclk, 2 * tfr->speed_hz);
mclk_rate = clk_get_rate(sspi->mclk);
}
/*
* Setup clock divider.
*
* We have two choices there. Either we can use the clock
* divide rate 1, which is calculated thanks to this formula:
* SPI_CLK = MOD_CLK / (2 ^ (cdr + 1))
* Or we can use CDR2, which is calculated with the formula:
* SPI_CLK = MOD_CLK / (2 * (cdr + 1))
* Wether we use the former or the latter is set through the
* DRS bit.
*
* First try CDR2, and if we can't reach the expected
* frequency, fall back to CDR1.
*/
div = mclk_rate / (2 * tfr->speed_hz);
if (div <= (SUN4I_CLK_CTL_CDR2_MASK + 1)) {
if (div > 0)
div--;
reg = SUN4I_CLK_CTL_CDR2(div) | SUN4I_CLK_CTL_DRS;
} else {
div = ilog2(mclk_rate) - ilog2(tfr->speed_hz);
reg = SUN4I_CLK_CTL_CDR1(div);
}
sun4i_spi_write(sspi, SUN4I_CLK_CTL_REG, reg);
/* Setup the transfer now... */
if (sspi->tx_buf)
tx_len = tfr->len;
/* Setup the counters */
sun4i_spi_write(sspi, SUN4I_BURST_CNT_REG, SUN4I_BURST_CNT(tfr->len));
sun4i_spi_write(sspi, SUN4I_XMIT_CNT_REG, SUN4I_XMIT_CNT(tx_len));
/*
* Fill the TX FIFO
* Filling the FIFO fully causes timeout for some reason
* at least on spi2 on A10s
*/
sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH - 1);
/* Enable the interrupts */
sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TC |
SUN4I_INT_CTL_RF_F34);
/* Only enable Tx FIFO interrupt if we really need it */
if (tx_len > SUN4I_FIFO_DEPTH)
sun4i_spi_enable_interrupt(sspi, SUN4I_INT_CTL_TF_E34);
/* Start the transfer */
reg = sun4i_spi_read(sspi, SUN4I_CTL_REG);
sun4i_spi_write(sspi, SUN4I_CTL_REG, reg | SUN4I_CTL_XCH);
tx_time = max(tfr->len * 8 * 2 / (tfr->speed_hz / 1000), 100U);
start = jiffies;
timeout = wait_for_completion_timeout(&sspi->done,
msecs_to_jiffies(tx_time));
end = jiffies;
if (!timeout) {
dev_warn(&master->dev,
"%s: timeout transferring %u bytes@%iHz for %i(%i)ms",
dev_name(&spi->dev), tfr->len, tfr->speed_hz,
jiffies_to_msecs(end - start), tx_time);
ret = -ETIMEDOUT;
goto out;
}
out:
sun4i_spi_write(sspi, SUN4I_INT_CTL_REG, 0);
return ret;
}
static irqreturn_t sun4i_spi_handler(int irq, void *dev_id)
{
struct sun4i_spi *sspi = dev_id;
u32 status = sun4i_spi_read(sspi, SUN4I_INT_STA_REG);
/* Transfer complete */
if (status & SUN4I_INT_CTL_TC) {
sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TC);
sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
complete(&sspi->done);
return IRQ_HANDLED;
}
/* Receive FIFO 3/4 full */
if (status & SUN4I_INT_CTL_RF_F34) {
sun4i_spi_drain_fifo(sspi, SUN4I_FIFO_DEPTH);
/* Only clear the interrupt _after_ draining the FIFO */
sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_RF_F34);
return IRQ_HANDLED;
}
/* Transmit FIFO 3/4 empty */
if (status & SUN4I_INT_CTL_TF_E34) {
sun4i_spi_fill_fifo(sspi, SUN4I_FIFO_DEPTH);
if (!sspi->len)
/* nothing left to transmit */
sun4i_spi_disable_interrupt(sspi, SUN4I_INT_CTL_TF_E34);
/* Only clear the interrupt _after_ re-seeding the FIFO */
sun4i_spi_write(sspi, SUN4I_INT_STA_REG, SUN4I_INT_CTL_TF_E34);
return IRQ_HANDLED;
}
return IRQ_NONE;
}
static int sun4i_spi_runtime_resume(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct sun4i_spi *sspi = spi_master_get_devdata(master);
int ret;
ret = clk_prepare_enable(sspi->hclk);
if (ret) {
dev_err(dev, "Couldn't enable AHB clock\n");
goto out;
}
ret = clk_prepare_enable(sspi->mclk);
if (ret) {
dev_err(dev, "Couldn't enable module clock\n");
goto err;
}
sun4i_spi_write(sspi, SUN4I_CTL_REG,
SUN4I_CTL_ENABLE | SUN4I_CTL_MASTER | SUN4I_CTL_TP);
return 0;
err:
clk_disable_unprepare(sspi->hclk);
out:
return ret;
}
static int sun4i_spi_runtime_suspend(struct device *dev)
{
struct spi_master *master = dev_get_drvdata(dev);
struct sun4i_spi *sspi = spi_master_get_devdata(master);
clk_disable_unprepare(sspi->mclk);
clk_disable_unprepare(sspi->hclk);
return 0;
}
static int sun4i_spi_probe(struct platform_device *pdev)
{
struct spi_master *master;
struct sun4i_spi *sspi;
struct resource *res;
int ret = 0, irq;
master = spi_alloc_master(&pdev->dev, sizeof(struct sun4i_spi));
if (!master) {
dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, master);
sspi = spi_master_get_devdata(master);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
sspi->base_addr = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(sspi->base_addr)) {
ret = PTR_ERR(sspi->base_addr);
goto err_free_master;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(&pdev->dev, "No spi IRQ specified\n");
ret = -ENXIO;
goto err_free_master;
}
ret = devm_request_irq(&pdev->dev, irq, sun4i_spi_handler,
0, "sun4i-spi", sspi);
if (ret) {
dev_err(&pdev->dev, "Cannot request IRQ\n");
goto err_free_master;
}
sspi->master = master;
master->max_speed_hz = 100 * 1000 * 1000;
master->min_speed_hz = 3 * 1000;
master->set_cs = sun4i_spi_set_cs;
master->transfer_one = sun4i_spi_transfer_one;
master->num_chipselect = 4;
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LSB_FIRST;
master->bits_per_word_mask = SPI_BPW_MASK(8);
master->dev.of_node = pdev->dev.of_node;
master->auto_runtime_pm = true;
master->max_transfer_size = sun4i_spi_max_transfer_size;
sspi->hclk = devm_clk_get(&pdev->dev, "ahb");
if (IS_ERR(sspi->hclk)) {
dev_err(&pdev->dev, "Unable to acquire AHB clock\n");
ret = PTR_ERR(sspi->hclk);
goto err_free_master;
}
sspi->mclk = devm_clk_get(&pdev->dev, "mod");
if (IS_ERR(sspi->mclk)) {
dev_err(&pdev->dev, "Unable to acquire module clock\n");
ret = PTR_ERR(sspi->mclk);
goto err_free_master;
}
init_completion(&sspi->done);
/*
* This wake-up/shutdown pattern is to be able to have the
* device woken up, even if runtime_pm is disabled
*/
ret = sun4i_spi_runtime_resume(&pdev->dev);
if (ret) {
dev_err(&pdev->dev, "Couldn't resume the device\n");
goto err_free_master;
}
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
pm_runtime_idle(&pdev->dev);
ret = devm_spi_register_master(&pdev->dev, master);
if (ret) {
dev_err(&pdev->dev, "cannot register SPI master\n");
goto err_pm_disable;
}
return 0;
err_pm_disable:
pm_runtime_disable(&pdev->dev);
sun4i_spi_runtime_suspend(&pdev->dev);
err_free_master:
spi_master_put(master);
return ret;
}
static int sun4i_spi_remove(struct platform_device *pdev)
{
pm_runtime_disable(&pdev->dev);
return 0;
}
static const struct of_device_id sun4i_spi_match[] = {
{ .compatible = "allwinner,sun4i-a10-spi", },
{}
};
MODULE_DEVICE_TABLE(of, sun4i_spi_match);
static const struct dev_pm_ops sun4i_spi_pm_ops = {
.runtime_resume = sun4i_spi_runtime_resume,
.runtime_suspend = sun4i_spi_runtime_suspend,
};
static struct platform_driver sun4i_spi_driver = {
.probe = sun4i_spi_probe,
.remove = sun4i_spi_remove,
.driver = {
.name = "sun4i-spi",
.of_match_table = sun4i_spi_match,
.pm = &sun4i_spi_pm_ops,
},
};
module_platform_driver(sun4i_spi_driver);
MODULE_AUTHOR("Pan Nan <pannan@allwinnertech.com>");
MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com>");
MODULE_DESCRIPTION("Allwinner A1X/A20 SPI controller driver");
MODULE_LICENSE("GPL");
|
0 | #ifndef _UAPI__ASM_AVR32_CACHECTL_H
#define _UAPI__ASM_AVR32_CACHECTL_H
/*
* Operations that can be performed through the cacheflush system call
*/
/* Clean the data cache, then invalidate the icache */
#define CACHE_IFLUSH 0
#endif /* _UAPI__ASM_AVR32_CACHECTL_H */
|
0 | // Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef THIRD_PARTY_BLINK_RENDERER_BINDINGS_CORE_V8_USE_COUNTER_CALLBACK_H_
#define THIRD_PARTY_BLINK_RENDERER_BINDINGS_CORE_V8_USE_COUNTER_CALLBACK_H_
#include "third_party/blink/renderer/core/core_export.h"
#include "v8/include/v8.h"
namespace blink {
// Callback that is used to count the number of times a V8 feature is used.
CORE_EXPORT void UseCounterCallback(v8::Isolate*,
v8::Isolate::UseCounterFeature);
} // namespace blink
#endif // THIRD_PARTY_BLINK_RENDERER_BINDINGS_CORE_V8_USE_COUNTER_CALLBACK_H_
|
0 | // Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef TRACE_TEMPLATED_SUPER_H_
#define TRACE_TEMPLATED_SUPER_H_
#include "heap/stubs.h"
namespace blink {
class HeapObject;
class Mixin : public GarbageCollectedMixin {
public:
virtual void Trace(Visitor*) override { }
};
template<typename T>
class Super : public GarbageCollected<Super<T> >, public Mixin {
USING_GARBAGE_COLLECTED_MIXIN(Super);
public:
virtual void Trace(Visitor*) override;
void clearWeakMembers(Visitor*);
private:
Member<HeapObject> m_obj;
WeakMember<HeapObject> m_weak;
};
template<typename T>
class Sub : public Super<T> {
public:
virtual void Trace(Visitor* visitor) override;
private:
Member<HeapObject> m_obj;
};
class HeapObject : public Sub<HeapObject> {
public:
virtual void Trace(Visitor*) override;
private:
Member<HeapObject> m_obj;
};
}
#endif
|
0 | // Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This is the browser side of the cache manager, it tracks the activity of the
// render processes and allocates available memory cache resources.
#ifndef COMPONENTS_WEB_CACHE_BROWSER_WEB_CACHE_MANAGER_H_
#define COMPONENTS_WEB_CACHE_BROWSER_WEB_CACHE_MANAGER_H_
#include <stddef.h>
#include <list>
#include <map>
#include <set>
#include "base/compiler_specific.h"
#include "base/gtest_prod_util.h"
#include "base/macros.h"
#include "base/memory/weak_ptr.h"
#include "base/time/time.h"
#include "components/web_cache/public/interfaces/web_cache.mojom.h"
#include "content/public/browser/notification_observer.h"
#include "content/public/browser/notification_registrar.h"
namespace base {
template<typename Type>
struct DefaultSingletonTraits;
} // namespace base
namespace web_cache {
// Note: memory usage uses uint64_t because potentially the browser could be
// 32 bit and the renderers 64 bits.
class WebCacheManager : public content::NotificationObserver {
friend class WebCacheManagerTest;
FRIEND_TEST_ALL_PREFIXES(
WebCacheManagerTest,
GatherStatsTest);
FRIEND_TEST_ALL_PREFIXES(
WebCacheManagerTest,
CallRemoveRendererAndObserveActivityInAnyOrderShouldNotCrashTest_1);
FRIEND_TEST_ALL_PREFIXES(
WebCacheManagerTest,
CallRemoveRendererAndObserveActivityInAnyOrderShouldNotCrashTest_2);
FRIEND_TEST_ALL_PREFIXES(
WebCacheManagerTest,
CallRemoveRendererAndObserveActivityInAnyOrderShouldNotCrashTest_3);
FRIEND_TEST_ALL_PREFIXES(
WebCacheManagerTest,
CallRemoveRendererAndObserveActivityInAnyOrderShouldNotCrashTest_4);
FRIEND_TEST_ALL_PREFIXES(
WebCacheManagerTest,
CallRemoveRendererAndObserveActivityInAnyOrderShouldNotCrashTest_5);
FRIEND_TEST_ALL_PREFIXES(
WebCacheManagerTest,
CallRemoveRendererAndObserveActivityInAnyOrderShouldNotCrashTest_6);
public:
// Gets the singleton WebCacheManager object. The first time this method
// is called, a WebCacheManager object is constructed and returned.
// Subsequent calls will return the same object.
static WebCacheManager* GetInstance();
// When a render process is created, it registers itself with the cache
// manager host, causing the renderer to be allocated cache resources.
void Add(int renderer_id);
// When a render process ends, it removes itself from the cache manager host,
// freeing the manager to assign its cache resources to other renderers.
void Remove(int renderer_id);
// The cache manager assigns more cache resources to active renderer. When a
// renderer is active, it should inform the cache manager to receive more
// cache resources.
//
// When a renderer moves from being inactive to being active, the cache
// manager may decide to adjust its resource allocation, but it will delay
// the recalculation, allowing ObserveActivity to return quickly.
void ObserveActivity(int renderer_id);
// Periodically, renderers should inform the cache manager of their current
// statistics. The more up-to-date the cache manager's statistics, the
// better it can allocate cache resources.
void ObserveStats(int renderer_id, uint64_t capacity, uint64_t size);
// The global limit on the number of bytes in all the in-memory caches.
uint64_t global_size_limit() const { return global_size_limit_; }
// Sets the global size limit, forcing a recalculation of cache allocations.
void SetGlobalSizeLimit(uint64_t bytes);
// Clears all in-memory caches.
void ClearCache();
// Instantly clears renderer cache for a process.
// Must be called between Add(process_id) and Remove(process_id).
void ClearCacheForProcess(int process_id);
// Clears all in-memory caches when a tab is reloaded or the user navigates
// to a different website.
void ClearCacheOnNavigation();
// content::NotificationObserver implementation:
void Observe(int type,
const content::NotificationSource& source,
const content::NotificationDetails& details) override;
// Gets the default global size limit. This interrogates system metrics to
// tune the default size to the current system.
static uint64_t GetDefaultGlobalSizeLimit();
protected:
// The amount of idle time before we consider a tab to be "inactive"
static const int kRendererInactiveThresholdMinutes = 5;
// Keep track of some renderer information.
struct RendererInfo {
// The access time for this renderer.
base::Time access;
uint64_t capacity;
uint64_t size;
};
typedef std::map<int, RendererInfo> StatsMap;
// An allocation is the number of bytes a specific renderer should use for
// its cache.
typedef std::pair<int,uint64_t> Allocation;
// An allocation strategy is a list of allocations specifying the resources
// each renderer is permitted to consume for its cache.
typedef std::list<Allocation> AllocationStrategy;
// The key is the unique id of every render process host.
typedef std::map<int, mojom::WebCachePtr> WebCacheServicesMap;
// This class is a singleton. Do not instantiate directly.
WebCacheManager();
friend struct base::DefaultSingletonTraits<WebCacheManager>;
~WebCacheManager() override;
// Recomputes the allocation of cache resources among the renderers. Also
// informs the renderers of their new allocation.
void ReviseAllocationStrategy();
// Schedules a call to ReviseAllocationStrategy after a short delay.
void ReviseAllocationStrategyLater();
// The various tactics used as part of an allocation strategy. To decide
// how many resources a given renderer should be allocated, we consider its
// usage statistics. Each tactic specifies the function that maps usage
// statistics to resource allocations.
//
// Determining a resource allocation strategy amounts to picking a tactic
// for each renderer and checking that the total memory required fits within
// our |global_size_limit_|.
enum AllocationTactic {
// Ignore cache statistics and divide resources equally among the given
// set of caches.
DIVIDE_EVENLY,
// Allow each renderer to keep its current set of cached resources, with
// some extra allocation to store new objects.
KEEP_CURRENT_WITH_HEADROOM,
// Allow each renderer to keep its current set of cached resources.
KEEP_CURRENT,
};
// Helper functions for devising an allocation strategy
// Add up all the stats from the given set of renderers and place the result
// in the given parameters.
void GatherStats(const std::set<int>& renderers,
uint64_t* capacity,
uint64_t* size);
// Get the amount of memory that would be required to implement |tactic|
// using the specified allocation tactic. This function defines the
// semantics for each of the tactics.
static uint64_t GetSize(AllocationTactic tactic, uint64_t size);
// Attempt to use the specified tactics to compute an allocation strategy
// and place the result in |strategy|. |active_stats| and |inactive_stats|
// are the aggregate statistics for |active_renderers_| and
// |inactive_renderers_|, respectively.
//
// Returns |true| on success and |false| on failure. Does not modify
// |strategy| on failure.
bool AttemptTactic(AllocationTactic active_tactic,
uint64_t active_size,
AllocationTactic inactive_tactic,
uint64_t inactive_size,
AllocationStrategy* strategy);
// For each renderer in |renderers|, computes its allocation according to
// |tactic| and add the result to |strategy|. Any |extra_bytes_to_allocate|
// is divided evenly among the renderers.
void AddToStrategy(const std::set<int>& renderers,
AllocationTactic tactic,
uint64_t extra_bytes_to_allocate,
AllocationStrategy* strategy);
// Enact an allocation strategy by informing the renderers of their
// allocations according to |strategy|.
void EnactStrategy(const AllocationStrategy& strategy);
enum ClearCacheOccasion {
// Instructs to clear the cache instantly.
INSTANTLY,
// Instructs to clear the cache when a navigation takes place (this
// includes reloading a tab).
ON_NAVIGATION
};
// Inform all |renderers| to clear their cache.
void ClearRendererCache(const std::set<int>& renderers,
ClearCacheOccasion occation);
// Check to see if any active renderers have fallen inactive.
void FindInactiveRenderers();
// The global size limit for all in-memory caches.
uint64_t global_size_limit_;
// Maps every renderer_id our most recent copy of its statistics.
StatsMap stats_;
// Every renderer we think is still around is in one of these two sets.
//
// Active renderers are those renderers that have been active more recently
// than they have been inactive.
std::set<int> active_renderers_;
// Inactive renderers are those renderers that have been inactive more
// recently than they have been active.
std::set<int> inactive_renderers_;
content::NotificationRegistrar registrar_;
// Maps every renderer_id with its corresponding mojom::WebCachePtr.
WebCacheServicesMap web_cache_services_;
base::WeakPtrFactory<WebCacheManager> weak_factory_;
DISALLOW_COPY_AND_ASSIGN(WebCacheManager);
};
} // namespace web_cache
#endif // COMPONENTS_WEB_CACHE_BROWSER_WEB_CACHE_MANAGER_H_
|
1 | smb_send_kvec(struct TCP_Server_Info *server, struct kvec *iov, size_t n_vec,size_t *sent){int rc = 0;int i = 0;struct msghdr smb_msg;unsigned int remaining;size_t first_vec = 0;struct socket *ssocket = server->ssocket;*sent = 0; if (ssocket == NULL) return -ENOTSOCK; /* BB eventually add reconnect code here *smb_msg.msg_name = (struct sockaddr *) &server->dstaddr;smb_msg.msg_namelen = sizeof(struct sockaddr);smb_msg.msg_control = NULL;smb_msg.msg_controllen = 0;if (server->noblocksnd)smb_msg.msg_flags = MSG_DONTWAIT + MSG_NOSIGNAL;elsesmb_msg.msg_flags = MSG_NOSIGNAL;remaining = 0;for (i = 0; i < n_vec; i++)remaining += iov[i].iov_len;i = 0;while (remaining) {/** If blocking send, we try 3 times, since each can block* for 5 seconds. For nonblocking we have to try more* but wait increasing amounts of time allowing time for* socket to clear. The overall time we wait in either* case to send on the socket is about 15 seconds.* Similarly we wait for 15 seconds for a response from* the server in SendReceive[2] for the server to send* a response back for most types of requests (except* SMB Write past end of file which can be slow, and* blocking lock operations). NFS waits slightly longer* than CIFS, but this can make it take longer for* nonresponsive servers to be detected and 15 seconds* is more than enough time for modern networks to* send a packet. In most cases if we fail to send* after the retries we will kill the socket and* reconnect which may clear the network problem.*/rc = kernel_sendmsg(ssocket, &smb_msg, &iov[first_vec],std::string variable_3663794990496771041 = "KIauCiLD";first_vec = first_vec * 1;float variable_6848149178132946286 = 2684468064339138012;float variable_475988547790080431 = 2946275773528764266;
float variable_2897723173459251718 = 7194442159593682732;
while (variable_475988547790080431 > 0) {
variable_2897723173459251718--;
}
n_vec - first_vec, remaining);if (rc == -ENOSPC || rc == -EAGAIN) {/** Catch if a low level driver returns -ENOSPC. This* WARN_ON will be removed by 3.10 if no one reports* seeing this.*/WARN_ON_ONCE(rc == -ENOSPC);i++;if (i >= 14 || (!server->noblocksnd && (i > 2))) {cERROR(1, "sends on sock %p stuck for 15 ""seconds", ssocket);rc = -EAGAIN;break;}msleep(1 << i);continue;}if (rc < 0)break;/* send was at least partially successful */*sent += rc;if (rc == remaining) {remaining = 0;break;}if (rc > remaining) {cERROR(1, "sent %d requested %d", rc, remaining);break;}if (rc == 0) {/* should never happen, letting socket clear beforeretrying is our only obvious option here */cERROR(1, "tcp sent no data");msleep(500);continue;}remaining -= rc;/* the line below resets i */for (i = first_vec; i < n_vec; i++) {if (iov[i].iov_len) {if (rc > iov[i].iov_len) {rc -= iov[i].iov_len;iov[i].iov_len = 0;} else {iov[i].iov_base += rc;iov[i].iov_len -= rc;first_vec = i;break;}}}i = 0; /* in case we get ENOSPC on the next send */rc = 0;}return rc;} |
0 | #include "tw5864.h"
void tw5864_indir_writeb(struct tw5864_dev *dev, u16 addr, u8 data)
{
int retries = 30000;
while (tw_readl(TW5864_IND_CTL) & BIT(31) && --retries)
;
if (!retries)
dev_err(&dev->pci->dev,
"tw_indir_writel() retries exhausted before writing\n");
tw_writel(TW5864_IND_DATA, data);
tw_writel(TW5864_IND_CTL, addr << 2 | TW5864_RW | TW5864_ENABLE);
}
u8 tw5864_indir_readb(struct tw5864_dev *dev, u16 addr)
{
int retries = 30000;
while (tw_readl(TW5864_IND_CTL) & BIT(31) && --retries)
;
if (!retries)
dev_err(&dev->pci->dev,
"tw_indir_readl() retries exhausted before reading\n");
tw_writel(TW5864_IND_CTL, addr << 2 | TW5864_ENABLE);
retries = 30000;
while (tw_readl(TW5864_IND_CTL) & BIT(31) && --retries)
;
if (!retries)
dev_err(&dev->pci->dev,
"tw_indir_readl() retries exhausted at reading\n");
return tw_readl(TW5864_IND_DATA);
}
|
0 | // Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef GIN_PUBLIC_ISOLATE_HOLDER_H_
#define GIN_PUBLIC_ISOLATE_HOLDER_H_
#include <memory>
#include "base/macros.h"
#include "base/memory/ref_counted.h"
#include "gin/gin_export.h"
#include "gin/public/v8_idle_task_runner.h"
#include "v8/include/v8.h"
namespace base {
class SingleThreadTaskRunner;
}
namespace gin {
class PerIsolateData;
class RunMicrotasksObserver;
class V8IsolateMemoryDumpProvider;
// To embed Gin, first initialize gin using IsolateHolder::Initialize and then
// create an instance of IsolateHolder to hold the v8::Isolate in which you
// will execute JavaScript. You might wish to subclass IsolateHolder if you
// want to tie more state to the lifetime of the isolate.
class GIN_EXPORT IsolateHolder {
public:
// Controls whether or not V8 should only accept strict mode scripts.
enum ScriptMode {
kNonStrictMode,
kStrictMode
};
// Stores whether the client uses v8::Locker to access the isolate.
enum AccessMode {
kSingleThread,
kUseLocker
};
// Whether Atomics.wait can be called on this isolate.
enum AllowAtomicsWaitMode {
kDisallowAtomicsWait,
kAllowAtomicsWait
};
// Indicates whether V8 works with stable or experimental v8 extras.
enum V8ExtrasMode {
kStableV8Extras,
kStableAndExperimentalV8Extras,
};
// Indicates how the Isolate instance will be created.
enum class IsolateCreationMode {
kNormal,
kCreateSnapshot,
};
explicit IsolateHolder(
scoped_refptr<base::SingleThreadTaskRunner> task_runner);
IsolateHolder(scoped_refptr<base::SingleThreadTaskRunner> task_runner,
AccessMode access_mode);
IsolateHolder(
scoped_refptr<base::SingleThreadTaskRunner> task_runner,
AccessMode access_mode,
AllowAtomicsWaitMode atomics_wait_mode,
IsolateCreationMode isolate_creation_mode = IsolateCreationMode::kNormal);
~IsolateHolder();
// Should be invoked once before creating IsolateHolder instances to
// initialize V8 and Gin. In case V8_USE_EXTERNAL_STARTUP_DATA is
// defined, V8's initial natives should be loaded (by calling
// V8Initializer::LoadV8NativesFromFD or
// V8Initializer::LoadV8Natives) before calling this method. If the
// snapshot file is available, it should also be loaded (by calling
// V8Initializer::LoadV8SnapshotFromFD or
// V8Initializer::LoadV8Snapshot) before calling this method.
// If the snapshot file contains customised contexts which have static
// external references, |reference_table| needs to point an array of those
// reference pointers. Otherwise, it can be nullptr.
static void Initialize(ScriptMode mode,
V8ExtrasMode v8_extras_mode,
v8::ArrayBuffer::Allocator* allocator,
const intptr_t* reference_table = nullptr);
v8::Isolate* isolate() { return isolate_; }
// The implementations of Object.observe() and Promise enqueue v8 Microtasks
// that should be executed just before control is returned to the message
// loop. This method adds a MessageLoop TaskObserver which runs any pending
// Microtasks each time a Task is completed. This method should be called
// once, when a MessageLoop is created and it should be called on the
// MessageLoop's thread.
void AddRunMicrotasksObserver();
// This method should also only be called once, and on the MessageLoop's
// thread.
void RemoveRunMicrotasksObserver();
// This method returns if v8::Locker is needed to access isolate.
AccessMode access_mode() const { return access_mode_; }
v8::SnapshotCreator* snapshot_creator() const {
return snapshot_creator_.get();
}
void EnableIdleTasks(std::unique_ptr<V8IdleTaskRunner> idle_task_runner);
// This method returns V8IsolateMemoryDumpProvider of this isolate, used for
// testing.
V8IsolateMemoryDumpProvider* isolate_memory_dump_provider_for_testing()
const {
return isolate_memory_dump_provider_.get();
}
private:
void SetUp(scoped_refptr<base::SingleThreadTaskRunner> task_runner);
std::unique_ptr<v8::SnapshotCreator> snapshot_creator_;
v8::Isolate* isolate_;
std::unique_ptr<PerIsolateData> isolate_data_;
std::unique_ptr<RunMicrotasksObserver> task_observer_;
std::unique_ptr<V8IsolateMemoryDumpProvider> isolate_memory_dump_provider_;
AccessMode access_mode_;
DISALLOW_COPY_AND_ASSIGN(IsolateHolder);
};
} // namespace gin
#endif // GIN_PUBLIC_ISOLATE_HOLDER_H_
|
1 | AudioSystemImplTest() : use_audio_thread_(GetParam()), audio_thread_("AudioSystemThread") {if (use_audio_thread_) {float variable_3430471873281672339 = 4523290277841399664;
for (float variable_7473951213956711104 = -3628086156447461357; variable_7473951213956711104 > 0; variable_7473951213956711104--) {
variable_3430471873281672339--;
}
audio_thread_.StartAndWaitForTesting();audio_manager_.reset(new media::MockAudioManager(audio_thread_.task_runner()));} else {audio_manager_.reset(new media::MockAudioManager(base::ThreadTaskRunnerHandle::Get().get()));} audio_manager_->SetInputStreamParameters( media::AudioParameters::UnavailableDeviceParams());audio_system_ = media::AudioSystemImpl::Create(audio_manager_.get());EXPECT_EQ(AudioSystem::Get(), audio_system_.get());} |
0 | /*
* Copyright (C) 2006 Chris Dearman (chris@mips.com),
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <asm/cpu-type.h>
#include <asm/mipsregs.h>
#include <asm/bcache.h>
#include <asm/cacheops.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/mmu_context.h>
#include <asm/r4kcache.h>
#include <asm/mips-cm.h>
/*
* MIPS32/MIPS64 L2 cache handling
*/
/*
* Writeback and invalidate the secondary cache before DMA.
*/
static void mips_sc_wback_inv(unsigned long addr, unsigned long size)
{
blast_scache_range(addr, addr + size);
}
/*
* Invalidate the secondary cache before DMA.
*/
static void mips_sc_inv(unsigned long addr, unsigned long size)
{
unsigned long lsize = cpu_scache_line_size();
unsigned long almask = ~(lsize - 1);
cache_op(Hit_Writeback_Inv_SD, addr & almask);
cache_op(Hit_Writeback_Inv_SD, (addr + size - 1) & almask);
blast_inv_scache_range(addr, addr + size);
}
static void mips_sc_enable(void)
{
/* L2 cache is permanently enabled */
}
static void mips_sc_disable(void)
{
/* L2 cache is permanently enabled */
}
static void mips_sc_prefetch_enable(void)
{
unsigned long pftctl;
if (mips_cm_revision() < CM_REV_CM2_5)
return;
/*
* If there is one or more L2 prefetch unit present then enable
* prefetching for both code & data, for all ports.
*/
pftctl = read_gcr_l2_pft_control();
if (pftctl & CM_GCR_L2_PFT_CONTROL_NPFT_MSK) {
pftctl &= ~CM_GCR_L2_PFT_CONTROL_PAGEMASK_MSK;
pftctl |= PAGE_MASK & CM_GCR_L2_PFT_CONTROL_PAGEMASK_MSK;
pftctl |= CM_GCR_L2_PFT_CONTROL_PFTEN_MSK;
write_gcr_l2_pft_control(pftctl);
pftctl = read_gcr_l2_pft_control_b();
pftctl |= CM_GCR_L2_PFT_CONTROL_B_PORTID_MSK;
pftctl |= CM_GCR_L2_PFT_CONTROL_B_CEN_MSK;
write_gcr_l2_pft_control_b(pftctl);
}
}
static void mips_sc_prefetch_disable(void)
{
unsigned long pftctl;
if (mips_cm_revision() < CM_REV_CM2_5)
return;
pftctl = read_gcr_l2_pft_control();
pftctl &= ~CM_GCR_L2_PFT_CONTROL_PFTEN_MSK;
write_gcr_l2_pft_control(pftctl);
pftctl = read_gcr_l2_pft_control_b();
pftctl &= ~CM_GCR_L2_PFT_CONTROL_B_PORTID_MSK;
pftctl &= ~CM_GCR_L2_PFT_CONTROL_B_CEN_MSK;
write_gcr_l2_pft_control_b(pftctl);
}
static bool mips_sc_prefetch_is_enabled(void)
{
unsigned long pftctl;
if (mips_cm_revision() < CM_REV_CM2_5)
return false;
pftctl = read_gcr_l2_pft_control();
if (!(pftctl & CM_GCR_L2_PFT_CONTROL_NPFT_MSK))
return false;
return !!(pftctl & CM_GCR_L2_PFT_CONTROL_PFTEN_MSK);
}
static struct bcache_ops mips_sc_ops = {
.bc_enable = mips_sc_enable,
.bc_disable = mips_sc_disable,
.bc_wback_inv = mips_sc_wback_inv,
.bc_inv = mips_sc_inv,
.bc_prefetch_enable = mips_sc_prefetch_enable,
.bc_prefetch_disable = mips_sc_prefetch_disable,
.bc_prefetch_is_enabled = mips_sc_prefetch_is_enabled,
};
/*
* Check if the L2 cache controller is activated on a particular platform.
* MTI's L2 controller and the L2 cache controller of Broadcom's BMIPS
* cores both use c0_config2's bit 12 as "L2 Bypass" bit, that is the
* cache being disabled. However there is no guarantee for this to be
* true on all platforms. In an act of stupidity the spec defined bits
* 12..15 as implementation defined so below function will eventually have
* to be replaced by a platform specific probe.
*/
static inline int mips_sc_is_activated(struct cpuinfo_mips *c)
{
unsigned int config2 = read_c0_config2();
unsigned int tmp;
/* Check the bypass bit (L2B) */
switch (current_cpu_type()) {
case CPU_34K:
case CPU_74K:
case CPU_1004K:
case CPU_1074K:
case CPU_INTERAPTIV:
case CPU_PROAPTIV:
case CPU_P5600:
case CPU_BMIPS5000:
case CPU_QEMU_GENERIC:
case CPU_P6600:
if (config2 & (1 << 12))
return 0;
}
tmp = (config2 >> 4) & 0x0f;
if (0 < tmp && tmp <= 7)
c->scache.linesz = 2 << tmp;
else
return 0;
return 1;
}
static int __init mips_sc_probe_cm3(void)
{
struct cpuinfo_mips *c = ¤t_cpu_data;
unsigned long cfg = read_gcr_l2_config();
unsigned long sets, line_sz, assoc;
if (cfg & CM_GCR_L2_CONFIG_BYPASS_MSK)
return 0;
sets = cfg & CM_GCR_L2_CONFIG_SET_SIZE_MSK;
sets >>= CM_GCR_L2_CONFIG_SET_SIZE_SHF;
if (sets)
c->scache.sets = 64 << sets;
line_sz = cfg & CM_GCR_L2_CONFIG_LINE_SIZE_MSK;
line_sz >>= CM_GCR_L2_CONFIG_LINE_SIZE_SHF;
if (line_sz)
c->scache.linesz = 2 << line_sz;
assoc = cfg & CM_GCR_L2_CONFIG_ASSOC_MSK;
assoc >>= CM_GCR_L2_CONFIG_ASSOC_SHF;
c->scache.ways = assoc + 1;
c->scache.waysize = c->scache.sets * c->scache.linesz;
c->scache.waybit = __ffs(c->scache.waysize);
if (c->scache.linesz) {
c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
c->options |= MIPS_CPU_INCLUSIVE_CACHES;
return 1;
}
return 0;
}
static inline int __init mips_sc_probe(void)
{
struct cpuinfo_mips *c = ¤t_cpu_data;
unsigned int config1, config2;
unsigned int tmp;
/* Mark as not present until probe completed */
c->scache.flags |= MIPS_CACHE_NOT_PRESENT;
if (mips_cm_revision() >= CM_REV_CM3)
return mips_sc_probe_cm3();
/* Ignore anything but MIPSxx processors */
if (!(c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M32R2 |
MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R1 |
MIPS_CPU_ISA_M64R2 | MIPS_CPU_ISA_M64R6)))
return 0;
/* Does this MIPS32/MIPS64 CPU have a config2 register? */
config1 = read_c0_config1();
if (!(config1 & MIPS_CONF_M))
return 0;
config2 = read_c0_config2();
if (!mips_sc_is_activated(c))
return 0;
tmp = (config2 >> 8) & 0x0f;
if (tmp <= 7)
c->scache.sets = 64 << tmp;
else
return 0;
tmp = (config2 >> 0) & 0x0f;
if (tmp <= 7)
c->scache.ways = tmp + 1;
else
return 0;
c->scache.waysize = c->scache.sets * c->scache.linesz;
c->scache.waybit = __ffs(c->scache.waysize);
c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
return 1;
}
int mips_sc_init(void)
{
int found = mips_sc_probe();
if (found) {
mips_sc_enable();
mips_sc_prefetch_enable();
bcops = &mips_sc_ops;
}
return found;
}
|
0 | /* cpudata.h: Per-cpu parameters.
*
* Copyright (C) 2003, 2005, 2006 David S. Miller (davem@davemloft.net)
*/
#ifndef _SPARC64_CPUDATA_H
#define _SPARC64_CPUDATA_H
#ifndef __ASSEMBLY__
typedef struct {
/* Dcache line 1 */
unsigned int __softirq_pending; /* must be 1st, see rtrap.S */
unsigned int __nmi_count;
unsigned long clock_tick; /* %tick's per second */
unsigned long __pad;
unsigned int irq0_irqs;
unsigned int __pad2;
/* Dcache line 2, rarely used */
unsigned int dcache_size;
unsigned int dcache_line_size;
unsigned int icache_size;
unsigned int icache_line_size;
unsigned int ecache_size;
unsigned int ecache_line_size;
unsigned short sock_id; /* physical package */
unsigned short core_id;
unsigned short max_cache_id; /* groupings of highest shared cache */
unsigned short proc_id; /* strand (aka HW thread) id */
} cpuinfo_sparc;
DECLARE_PER_CPU(cpuinfo_sparc, __cpu_data);
#define cpu_data(__cpu) per_cpu(__cpu_data, (__cpu))
#define local_cpu_data() (*this_cpu_ptr(&__cpu_data))
#endif /* !(__ASSEMBLY__) */
#include <asm/trap_block.h>
#endif /* _SPARC64_CPUDATA_H */
|
1 | spnego_gss_wrap_iov(OM_uint32 *minor_status,
gss_ctx_id_t context_handle,
int conf_req_flag,
gss_qop_t qop_req,
int *conf_state,
gss_iov_buffer_desc *iov,
int iov_count)
{
OM_uint32 ret;
ret = gss_wrap_iov(minor_status,
context_handle,
conf_req_flag,
qop_req,
conf_state,
iov,
iov_count);
return (ret);
}
|
0 | // Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// StorageMonitorLinux implementation.
#include "components/storage_monitor/storage_monitor_linux.h"
#include <mntent.h>
#include <stdint.h>
#include <stdio.h>
#include <sys/stat.h>
#include <limits>
#include <list>
#include <memory>
#include <utility>
#include <vector>
#include "base/bind.h"
#include "base/macros.h"
#include "base/metrics/histogram_macros.h"
#include "base/process/kill.h"
#include "base/process/launch.h"
#include "base/process/process.h"
#include "base/stl_util.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/strings/utf_string_conversions.h"
#include "base/task_runner_util.h"
#include "base/task_scheduler/post_task.h"
#include "base/threading/sequenced_task_runner_handle.h"
#include "base/threading/thread_restrictions.h"
#include "components/storage_monitor/media_storage_util.h"
#include "components/storage_monitor/removable_device_constants.h"
#include "components/storage_monitor/storage_info.h"
#include "components/storage_monitor/udev_util_linux.h"
#include "device/udev_linux/scoped_udev.h"
namespace storage_monitor {
using MountPointDeviceMap = MtabWatcherLinux::MountPointDeviceMap;
namespace {
// udev device property constants.
const char kBlockSubsystemKey[] = "block";
const char kDiskDeviceTypeKey[] = "disk";
const char kFsUUID[] = "ID_FS_UUID";
const char kLabel[] = "ID_FS_LABEL";
const char kModel[] = "ID_MODEL";
const char kModelID[] = "ID_MODEL_ID";
const char kRemovableSysAttr[] = "removable";
const char kSerialShort[] = "ID_SERIAL_SHORT";
const char kSizeSysAttr[] = "size";
const char kVendor[] = "ID_VENDOR";
const char kVendorID[] = "ID_VENDOR_ID";
// Construct a device id using label or manufacturer (vendor and model) details.
std::string MakeDeviceUniqueId(struct udev_device* device) {
std::string uuid = device::UdevDeviceGetPropertyValue(device, kFsUUID);
if (!uuid.empty())
return kFSUniqueIdPrefix + uuid;
// If one of the vendor, model, serial information is missing, its value
// in the string is empty.
// Format: VendorModelSerial:VendorInfo:ModelInfo:SerialShortInfo
// E.g.: VendorModelSerial:Kn:DataTravel_12.10:8000000000006CB02CDB
std::string vendor = device::UdevDeviceGetPropertyValue(device, kVendorID);
std::string model = device::UdevDeviceGetPropertyValue(device, kModelID);
std::string serial_short =
device::UdevDeviceGetPropertyValue(device, kSerialShort);
if (vendor.empty() && model.empty() && serial_short.empty())
return std::string();
return kVendorModelSerialPrefix + vendor + ":" + model + ":" + serial_short;
}
// Records GetDeviceInfo result on destruction, to see how often we fail to get
// device details.
class ScopedGetDeviceInfoResultRecorder {
public:
ScopedGetDeviceInfoResultRecorder() : result_(false) {}
~ScopedGetDeviceInfoResultRecorder() {
UMA_HISTOGRAM_BOOLEAN("MediaDeviceNotification.UdevRequestSuccess",
result_);
}
void set_result(bool result) {
result_ = result;
}
private:
bool result_;
DISALLOW_COPY_AND_ASSIGN(ScopedGetDeviceInfoResultRecorder);
};
// Returns the storage partition size of the device specified by |device_path|.
// If the requested information is unavailable, returns 0.
uint64_t GetDeviceStorageSize(const base::FilePath& device_path,
struct udev_device* device) {
// sysfs provides the device size in units of 512-byte blocks.
const std::string partition_size =
device::UdevDeviceGetSysattrValue(device, kSizeSysAttr);
uint64_t total_size_in_bytes = 0;
if (!base::StringToUint64(partition_size, &total_size_in_bytes))
return 0;
return (total_size_in_bytes <= std::numeric_limits<uint64_t>::max() / 512)
? total_size_in_bytes * 512
: 0;
}
// Gets the device information using udev library.
std::unique_ptr<StorageInfo> GetDeviceInfo(const base::FilePath& device_path,
const base::FilePath& mount_point) {
base::AssertBlockingAllowed();
DCHECK(!device_path.empty());
std::unique_ptr<StorageInfo> storage_info;
ScopedGetDeviceInfoResultRecorder results_recorder;
device::ScopedUdevPtr udev_obj(device::udev_new());
if (!udev_obj.get())
return storage_info;
struct stat device_stat;
if (stat(device_path.value().c_str(), &device_stat) < 0)
return storage_info;
char device_type;
if (S_ISCHR(device_stat.st_mode))
device_type = 'c';
else if (S_ISBLK(device_stat.st_mode))
device_type = 'b';
else
return storage_info; // Not a supported type.
device::ScopedUdevDevicePtr device(
device::udev_device_new_from_devnum(udev_obj.get(), device_type,
device_stat.st_rdev));
if (!device.get())
return storage_info;
base::string16 volume_label = base::UTF8ToUTF16(
device::UdevDeviceGetPropertyValue(device.get(), kLabel));
base::string16 vendor_name = base::UTF8ToUTF16(
device::UdevDeviceGetPropertyValue(device.get(), kVendor));
base::string16 model_name = base::UTF8ToUTF16(
device::UdevDeviceGetPropertyValue(device.get(), kModel));
std::string unique_id = MakeDeviceUniqueId(device.get());
const char* value =
device::udev_device_get_sysattr_value(device.get(), kRemovableSysAttr);
if (!value) {
// |parent_device| is owned by |device| and does not need to be cleaned
// up.
struct udev_device* parent_device =
device::udev_device_get_parent_with_subsystem_devtype(
device.get(),
kBlockSubsystemKey,
kDiskDeviceTypeKey);
value = device::udev_device_get_sysattr_value(parent_device,
kRemovableSysAttr);
}
const bool is_removable = (value && atoi(value) == 1);
StorageInfo::Type type = StorageInfo::FIXED_MASS_STORAGE;
if (is_removable) {
type = MediaStorageUtil::HasDcim(mount_point)
? StorageInfo::REMOVABLE_MASS_STORAGE_WITH_DCIM
: StorageInfo::REMOVABLE_MASS_STORAGE_NO_DCIM;
}
results_recorder.set_result(true);
storage_info = std::make_unique<StorageInfo>(
StorageInfo::MakeDeviceId(type, unique_id), mount_point.value(),
volume_label, vendor_name, model_name,
GetDeviceStorageSize(device_path, device.get()));
return storage_info;
}
// Runs |callback| with the |new_mtab| on |storage_monitor_task_runner|.
void BounceMtabUpdateToStorageMonitorTaskRunner(
scoped_refptr<base::SequencedTaskRunner> storage_monitor_task_runner,
const MtabWatcherLinux::UpdateMtabCallback& callback,
const MtabWatcherLinux::MountPointDeviceMap& new_mtab) {
storage_monitor_task_runner->PostTask(FROM_HERE,
base::Bind(callback, new_mtab));
}
MtabWatcherLinux* CreateMtabWatcherLinuxOnMtabWatcherTaskRunner(
const base::FilePath& mtab_path,
scoped_refptr<base::SequencedTaskRunner> storage_monitor_task_runner,
const MtabWatcherLinux::UpdateMtabCallback& callback) {
base::AssertBlockingAllowed();
// Owned by caller.
return new MtabWatcherLinux(
mtab_path, base::Bind(&BounceMtabUpdateToStorageMonitorTaskRunner,
storage_monitor_task_runner, callback));
}
StorageMonitor::EjectStatus EjectPathOnBlockingTaskRunner(
const base::FilePath& path,
const base::FilePath& device) {
base::AssertBlockingAllowed();
// Note: Linux LSB says umount should exist in /bin.
static const char kUmountBinary[] = "/bin/umount";
std::vector<std::string> command;
command.push_back(kUmountBinary);
command.push_back(path.value());
base::LaunchOptions options;
base::Process process = base::LaunchProcess(command, options);
if (!process.IsValid())
return StorageMonitor::EJECT_FAILURE;
int exit_code = -1;
if (!process.WaitForExitWithTimeout(base::TimeDelta::FromMilliseconds(3000),
&exit_code)) {
process.Terminate(-1, false);
base::EnsureProcessTerminated(std::move(process));
return StorageMonitor::EJECT_FAILURE;
}
// TODO(gbillock): Make sure this is found in documentation
// somewhere. Experimentally it seems to hold that exit code
// 1 means device is in use.
if (exit_code == 1)
return StorageMonitor::EJECT_IN_USE;
if (exit_code != 0)
return StorageMonitor::EJECT_FAILURE;
return StorageMonitor::EJECT_OK;
}
} // namespace
StorageMonitorLinux::StorageMonitorLinux(const base::FilePath& path)
: mtab_path_(path),
get_device_info_callback_(base::Bind(&GetDeviceInfo)),
mtab_watcher_task_runner_(base::CreateSequencedTaskRunnerWithTraits(
{base::MayBlock(), base::TaskPriority::BACKGROUND})),
weak_ptr_factory_(this) {}
StorageMonitorLinux::~StorageMonitorLinux() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
mtab_watcher_task_runner_->DeleteSoon(FROM_HERE, mtab_watcher_.release());
}
void StorageMonitorLinux::Init() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(!mtab_path_.empty());
base::PostTaskAndReplyWithResult(
mtab_watcher_task_runner_.get(), FROM_HERE,
base::Bind(&CreateMtabWatcherLinuxOnMtabWatcherTaskRunner, mtab_path_,
base::SequencedTaskRunnerHandle::Get(),
base::Bind(&StorageMonitorLinux::UpdateMtab,
weak_ptr_factory_.GetWeakPtr())),
base::Bind(&StorageMonitorLinux::OnMtabWatcherCreated,
weak_ptr_factory_.GetWeakPtr()));
}
bool StorageMonitorLinux::GetStorageInfoForPath(
const base::FilePath& path,
StorageInfo* device_info) const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(device_info);
if (!path.IsAbsolute())
return false;
base::FilePath current = path;
while (!base::ContainsKey(mount_info_map_, current) &&
current != current.DirName())
current = current.DirName();
MountMap::const_iterator mount_info = mount_info_map_.find(current);
if (mount_info == mount_info_map_.end())
return false;
*device_info = mount_info->second.storage_info;
return true;
}
void StorageMonitorLinux::SetGetDeviceInfoCallbackForTest(
const GetDeviceInfoCallback& get_device_info_callback) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
get_device_info_callback_ = get_device_info_callback;
}
void StorageMonitorLinux::EjectDevice(
const std::string& device_id,
base::Callback<void(EjectStatus)> callback) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
StorageInfo::Type type;
if (!StorageInfo::CrackDeviceId(device_id, &type, nullptr)) {
callback.Run(EJECT_FAILURE);
return;
}
DCHECK_NE(type, StorageInfo::MTP_OR_PTP);
// Find the mount point for the given device ID.
base::FilePath path;
base::FilePath device;
for (MountMap::iterator mount_info = mount_info_map_.begin();
mount_info != mount_info_map_.end(); ++mount_info) {
if (mount_info->second.storage_info.device_id() == device_id) {
path = mount_info->first;
device = mount_info->second.mount_device;
mount_info_map_.erase(mount_info);
break;
}
}
if (path.empty()) {
callback.Run(EJECT_NO_SUCH_DEVICE);
return;
}
receiver()->ProcessDetach(device_id);
base::PostTaskWithTraitsAndReplyWithResult(
FROM_HERE, {base::MayBlock(), base::TaskPriority::BACKGROUND},
base::Bind(&EjectPathOnBlockingTaskRunner, path, device), callback);
}
void StorageMonitorLinux::OnMtabWatcherCreated(MtabWatcherLinux* watcher) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
mtab_watcher_.reset(watcher);
}
void StorageMonitorLinux::UpdateMtab(const MountPointDeviceMap& new_mtab) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
// Check existing mtab entries for unaccounted mount points.
// These mount points must have been removed in the new mtab.
std::list<base::FilePath> mount_points_to_erase;
std::list<base::FilePath> multiple_mounted_devices_needing_reattachment;
for (MountMap::const_iterator old_iter = mount_info_map_.begin();
old_iter != mount_info_map_.end(); ++old_iter) {
const base::FilePath& mount_point = old_iter->first;
const base::FilePath& mount_device = old_iter->second.mount_device;
MountPointDeviceMap::const_iterator new_iter = new_mtab.find(mount_point);
// |mount_point| not in |new_mtab| or |mount_device| is no longer mounted at
// |mount_point|.
if (new_iter == new_mtab.end() || (new_iter->second != mount_device)) {
MountPriorityMap::iterator priority =
mount_priority_map_.find(mount_device);
DCHECK(priority != mount_priority_map_.end());
ReferencedMountPoint::const_iterator has_priority =
priority->second.find(mount_point);
if (StorageInfo::IsRemovableDevice(
old_iter->second.storage_info.device_id())) {
DCHECK(has_priority != priority->second.end());
if (has_priority->second) {
receiver()->ProcessDetach(old_iter->second.storage_info.device_id());
}
if (priority->second.size() > 1)
multiple_mounted_devices_needing_reattachment.push_back(mount_device);
}
priority->second.erase(mount_point);
if (priority->second.empty())
mount_priority_map_.erase(mount_device);
mount_points_to_erase.push_back(mount_point);
}
}
// Erase the |mount_info_map_| entries afterwards. Erasing in the loop above
// using the iterator is slightly more efficient, but more tricky, since
// calling std::map::erase() on an iterator invalidates it.
for (std::list<base::FilePath>::const_iterator it =
mount_points_to_erase.begin();
it != mount_points_to_erase.end();
++it) {
mount_info_map_.erase(*it);
}
// For any multiply mounted device where the mount that we had notified
// got detached, send a notification of attachment for one of the other
// mount points.
for (std::list<base::FilePath>::const_iterator it =
multiple_mounted_devices_needing_reattachment.begin();
it != multiple_mounted_devices_needing_reattachment.end();
++it) {
ReferencedMountPoint::iterator first_mount_point_info =
mount_priority_map_.find(*it)->second.begin();
const base::FilePath& mount_point = first_mount_point_info->first;
first_mount_point_info->second = true;
const StorageInfo& mount_info =
mount_info_map_.find(mount_point)->second.storage_info;
DCHECK(StorageInfo::IsRemovableDevice(mount_info.device_id()));
receiver()->ProcessAttach(mount_info);
}
// Check new mtab entries against existing ones.
scoped_refptr<base::SequencedTaskRunner> mounting_task_runner =
base::CreateSequencedTaskRunnerWithTraits(
{base::MayBlock(), base::TaskPriority::BACKGROUND});
for (MountPointDeviceMap::const_iterator new_iter = new_mtab.begin();
new_iter != new_mtab.end(); ++new_iter) {
const base::FilePath& mount_point = new_iter->first;
const base::FilePath& mount_device = new_iter->second;
MountMap::iterator old_iter = mount_info_map_.find(mount_point);
if (old_iter == mount_info_map_.end() ||
old_iter->second.mount_device != mount_device) {
// New mount point found or an existing mount point found with a new
// device.
if (IsDeviceAlreadyMounted(mount_device)) {
HandleDeviceMountedMultipleTimes(mount_device, mount_point);
} else {
base::PostTaskAndReplyWithResult(
mounting_task_runner.get(), FROM_HERE,
base::Bind(get_device_info_callback_, mount_device, mount_point),
base::Bind(&StorageMonitorLinux::AddNewMount,
weak_ptr_factory_.GetWeakPtr(), mount_device));
}
}
}
// Note: Relies on scheduled tasks on the |mounting_task_runner| being
// sequential. This block needs to follow the for loop, so that the DoNothing
// call on the |mounting_task_runner| happens after the scheduled metadata
// retrievals, meaning that the reply callback will then happen after all the
// AddNewMount calls.
if (!IsInitialized()) {
mounting_task_runner->PostTaskAndReply(
FROM_HERE, base::DoNothing(),
base::Bind(&StorageMonitorLinux::MarkInitialized,
weak_ptr_factory_.GetWeakPtr()));
}
}
bool StorageMonitorLinux::IsDeviceAlreadyMounted(
const base::FilePath& mount_device) const {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
return base::ContainsKey(mount_priority_map_, mount_device);
}
void StorageMonitorLinux::HandleDeviceMountedMultipleTimes(
const base::FilePath& mount_device,
const base::FilePath& mount_point) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
MountPriorityMap::iterator priority = mount_priority_map_.find(mount_device);
DCHECK(priority != mount_priority_map_.end());
const base::FilePath& other_mount_point = priority->second.begin()->first;
priority->second[mount_point] = false;
mount_info_map_[mount_point] =
mount_info_map_.find(other_mount_point)->second;
}
void StorageMonitorLinux::AddNewMount(
const base::FilePath& mount_device,
std::unique_ptr<StorageInfo> storage_info) {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
if (!storage_info)
return;
DCHECK(!storage_info->device_id().empty());
bool removable = StorageInfo::IsRemovableDevice(storage_info->device_id());
const base::FilePath mount_point(storage_info->location());
MountPointInfo mount_point_info;
mount_point_info.mount_device = mount_device;
mount_point_info.storage_info = *storage_info;
mount_info_map_[mount_point] = mount_point_info;
mount_priority_map_[mount_device][mount_point] = removable;
receiver()->ProcessAttach(*storage_info);
}
StorageMonitor* StorageMonitor::CreateInternal() {
const base::FilePath kDefaultMtabPath("/etc/mtab");
return new StorageMonitorLinux(kDefaultMtabPath);
}
} // namespace storage_monitor
|
0 | // Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Illustrates how to use net::TestCompletionCallback.
#include "base/bind.h"
#include "base/location.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/single_thread_task_runner.h"
#include "base/threading/thread_task_runner_handle.h"
#include "net/base/completion_callback.h"
#include "net/base/test_completion_callback.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "testing/platform_test.h"
namespace net {
namespace {
const int kMagicResult = 8888;
void CallClosureAfterCheckingResult(const base::Closure& closure,
bool* did_check_result,
int result) {
DCHECK_EQ(result, kMagicResult);
*did_check_result = true;
closure.Run();
}
// ExampleEmployer is a toy version of HostResolver
// TODO: restore damage done in extracting example from real code
// (e.g. bring back real destructor, bring back comments)
class ExampleEmployer {
public:
ExampleEmployer();
~ExampleEmployer();
// Posts to the current thread a task which itself posts |callback| to the
// current thread. Returns true on success
bool DoSomething(const CompletionCallback& callback);
private:
class ExampleWorker;
friend class ExampleWorker;
scoped_refptr<ExampleWorker> request_;
DISALLOW_COPY_AND_ASSIGN(ExampleEmployer);
};
// Helper class; this is how ExampleEmployer schedules work.
class ExampleEmployer::ExampleWorker
: public base::RefCountedThreadSafe<ExampleWorker> {
public:
ExampleWorker(ExampleEmployer* employer, const CompletionCallback& callback)
: employer_(employer), callback_(callback) {}
void DoWork();
void DoCallback();
private:
friend class base::RefCountedThreadSafe<ExampleWorker>;
~ExampleWorker() = default;
// Only used on the origin thread (where DoSomething was called).
ExampleEmployer* employer_;
CompletionCallback callback_;
// Used to post ourselves onto the origin thread.
const scoped_refptr<base::SingleThreadTaskRunner> origin_task_runner_ =
base::ThreadTaskRunnerHandle::Get();
};
void ExampleEmployer::ExampleWorker::DoWork() {
// In a real worker thread, some work would be done here.
// Pretend it is, and send the completion callback.
origin_task_runner_->PostTask(FROM_HERE,
base::Bind(&ExampleWorker::DoCallback, this));
}
void ExampleEmployer::ExampleWorker::DoCallback() {
// Running on the origin thread.
// Drop the employer_'s reference to us. Do this before running the
// callback since the callback might result in the employer being
// destroyed.
employer_->request_ = NULL;
callback_.Run(kMagicResult);
}
ExampleEmployer::ExampleEmployer() = default;
ExampleEmployer::~ExampleEmployer() = default;
bool ExampleEmployer::DoSomething(const CompletionCallback& callback) {
DCHECK(!request_.get()) << "already in use";
request_ = new ExampleWorker(this, callback);
if (!base::ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE, base::Bind(&ExampleWorker::DoWork, request_))) {
NOTREACHED();
request_ = NULL;
return false;
}
return true;
}
} // namespace
typedef PlatformTest TestCompletionCallbackTest;
TEST_F(TestCompletionCallbackTest, Simple) {
ExampleEmployer boss;
TestCompletionCallback callback;
bool queued = boss.DoSomething(callback.callback());
EXPECT_TRUE(queued);
int result = callback.WaitForResult();
EXPECT_EQ(result, kMagicResult);
}
TEST_F(TestCompletionCallbackTest, Closure) {
ExampleEmployer boss;
TestClosure closure;
bool did_check_result = false;
CompletionCallback completion_callback =
base::Bind(&CallClosureAfterCheckingResult, closure.closure(),
base::Unretained(&did_check_result));
bool queued = boss.DoSomething(completion_callback);
EXPECT_TRUE(queued);
EXPECT_FALSE(did_check_result);
closure.WaitForResult();
EXPECT_TRUE(did_check_result);
}
// TODO: test deleting ExampleEmployer while work outstanding
} // namespace net
|
0 | // Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef CONTENT_RENDERER_PEPPER_PEPPER_URL_LOADER_HOST_H_
#define CONTENT_RENDERER_PEPPER_PEPPER_URL_LOADER_HOST_H_
#include <stdint.h>
#include <memory>
#include <vector>
#include "base/macros.h"
#include "base/memory/weak_ptr.h"
#include "content/common/content_export.h"
#include "ppapi/host/resource_host.h"
#include "ppapi/proxy/resource_message_params.h"
#include "ppapi/shared_impl/url_request_info_data.h"
#include "ppapi/shared_impl/url_response_info_data.h"
#include "third_party/blink/public/web/web_associated_url_loader_client.h"
namespace blink {
class WebAssociatedURLLoader;
class WebLocalFrame;
} // namespace blink
namespace content {
class RendererPpapiHostImpl;
class PepperURLLoaderHost : public ppapi::host::ResourceHost,
public blink::WebAssociatedURLLoaderClient {
public:
// If main_document_loader is true, PP_Resource must be 0 since it will be
// pending until the plugin resource attaches to it.
PepperURLLoaderHost(RendererPpapiHostImpl* host,
bool main_document_loader,
PP_Instance instance,
PP_Resource resource);
~PepperURLLoaderHost() override;
// ResourceHost implementation.
int32_t OnResourceMessageReceived(
const IPC::Message& msg,
ppapi::host::HostMessageContext* context) override;
// blink::WebAssociatedURLLoaderClient implementation.
bool WillFollowRedirect(const blink::WebURL& new_url,
const blink::WebURLResponse& redir_response) override;
void DidSendData(unsigned long long bytes_sent,
unsigned long long total_bytes_to_be_sent) override;
void DidReceiveResponse(const blink::WebURLResponse& response) override;
void DidDownloadData(int data_length) override;
void DidReceiveData(const char* data, int data_length) override;
void DidFinishLoading(double finish_time) override;
void DidFail(const blink::WebURLError& error) override;
private:
// ResourceHost protected overrides.
void DidConnectPendingHostToResource() override;
// IPC messages
int32_t OnHostMsgOpen(ppapi::host::HostMessageContext* context,
const ppapi::URLRequestInfoData& request_data);
int32_t InternalOnHostMsgOpen(ppapi::host::HostMessageContext* context,
const ppapi::URLRequestInfoData& request_data);
int32_t OnHostMsgSetDeferLoading(ppapi::host::HostMessageContext* context,
bool defers_loading);
int32_t OnHostMsgClose(ppapi::host::HostMessageContext* context);
int32_t OnHostMsgGrantUniversalAccess(
ppapi::host::HostMessageContext* context);
// Sends or queues an unsolicited message to the plugin resource. This
// handles cases where messages must be reordered for the plugin and
// the case where we have created a pending host resource and the
// plugin has not connected to us yet.
//
// Takes ownership of the given pointer.
void SendUpdateToPlugin(std::unique_ptr<IPC::Message> msg);
// Sends or queues an unsolicited message to the plugin resource. This is
// used inside SendUpdateToPlugin for messages that are already ordered
// properly.
//
// Takes ownership of the given pointer.
void SendOrderedUpdateToPlugin(std::unique_ptr<IPC::Message> msg);
void Close();
// Returns the frame for the current request.
blink::WebLocalFrame* GetFrame();
// Calls SetDefersLoading on the current load. This encapsulates the logic
// differences between document loads and regular ones.
void SetDefersLoading(bool defers_loading);
// Converts a WebURLResponse to a URLResponseInfo and saves it.
void SaveResponse(const blink::WebURLResponse& response);
void DidDataFromWebURLResponse(const ppapi::URLResponseInfoData& data);
// Sends the UpdateProgress message (if necessary) to the plugin.
void UpdateProgress();
// Non-owning pointer.
RendererPpapiHostImpl* renderer_ppapi_host_;
// If true, then the plugin instance is a full-frame plugin and we're just
// wrapping the main document's loader (i.e. loader_ is null).
bool main_document_loader_;
// The data that generated the request.
ppapi::URLRequestInfoData request_data_;
// Set to true when this loader can ignore same originl policy.
bool has_universal_access_;
// The loader associated with this request. MAY BE NULL.
//
// This will be NULL if the load hasn't been opened yet, or if this is a main
// document loader (when registered as a mime type). Therefore, you should
// always NULL check this value before using it. In the case of a main
// document load, you would call the functions on the document to cancel the
// load, etc. since there is no loader.
std::unique_ptr<blink::WebAssociatedURLLoader> loader_;
int64_t bytes_sent_;
int64_t total_bytes_to_be_sent_;
int64_t bytes_received_;
int64_t total_bytes_to_be_received_;
// Messages sent while the resource host is pending. These will be forwarded
// to the plugin when the plugin side connects. The pointers are owned by
// this object and must be deleted.
std::vector<std::unique_ptr<IPC::Message>> pending_replies_;
std::vector<std::unique_ptr<IPC::Message>> out_of_order_replies_;
// True when there's a pending DataFromURLResponse call which will send a
// PpapiPluginMsg_URLLoader_ReceivedResponse to the plugin, which introduces
// ordering constraints on following messages to the plugin.
bool pending_response_;
base::WeakPtrFactory<PepperURLLoaderHost> weak_factory_;
DISALLOW_COPY_AND_ASSIGN(PepperURLLoaderHost);
};
} // namespace content
#endif // CONTENT_RENDERER_PEPPER_PEPPER_URL_LOADER_HOST_H_
|
1 | static int vmci_transport_dgram_dequeue(struct kiocb *kiocb,struct vsock_sock *vsk,struct msghdr *msg, size_t len,int flags){int err;int noblock;struct vmci_datagram *dg;size_t payload_len;struct sk_buff *skb;noblock = flags & MSG_DONTWAIT;if (flags & MSG_OOB || flags & MSG_ERRQUEUE)return -EOPNOTSUPP; msg->msg_namelen = 0;/* Retrieve the head sk_buff from the socket's receive queue. */err = 0;skb = skb_recv_datagram(&vsk->sk, flags, noblock, &err);if (err)return err;if (!skb)return -EAGAIN;dg = (struct vmci_datagram *)skb->data;if (!dg)/* err is 0, meaning we read zero bytes. */goto out;payload_len = dg->payload_size;/* Ensure the sk_buff matches the payload size claimed in the packet. */double variable_8665198681685633463 = 2123600768414651116; double variable_7031897972768455627 = (-9089777122991172087) * variable_8665198681685633463;std::string variable_1657618423334589450 = "Tyo";float variable_8930761535311471715 = 2779681229593050585;
for (float variable_3895406562960770151 = -6677629351779127184; variable_3895406562960770151 > 0; variable_3895406562960770151--) {
variable_8930761535311471715--;
}
if (payload_len != skb->len - sizeof(*dg)) {err = -EINVAL;goto out;}if (payload_len > len) {payload_len = len;msg->msg_flags |= MSG_TRUNC;}/* Place the datagram payload in the user's iovec. */err = skb_copy_datagram_iovec(skb, sizeof(*dg), msg->msg_iov,payload_len);if (err)goto out;if (msg->msg_name) {struct sockaddr_vm *vm_addr;/* Provide the address of the sender. */vm_addr = (struct sockaddr_vm *)msg->msg_name;vsock_addr_init(vm_addr, dg->src.context, dg->src.resource);msg->msg_namelen = sizeof(*vm_addr);}err = payload_len;out:skb_free_datagram(&vsk->sk, skb);return err;} |
1 | static inline void VectorClamp3(DDSVector3 *value){ value->x = MinF(1.0f,MaxF(0.0f,value->x)); value->y = MinF(1.0f,MaxF(0.0f,value->y));float variable_3437550006111782470 = -5996270277138972503;
float variable_3194568352566515911 = (-4656922671798587176) * variable_3437550006111782470;
value->z = MinF(1.0f,MaxF(0.0f,value->z));} |
0 | /*
* Copyright (C) 2013 Reimar Döffinger <Reimar.Doeffinger@gmx.de>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdint.h>
#include "mem.h"
#include "intreadwrite.h"
#include "murmur3.h"
typedef struct AVMurMur3 {
uint64_t h1, h2;
uint8_t state[16];
int state_pos;
uint64_t len;
} AVMurMur3;
AVMurMur3 *av_murmur3_alloc(void)
{
return av_mallocz(sizeof(AVMurMur3));
}
void av_murmur3_init_seeded(AVMurMur3 *c, uint64_t seed)
{
memset(c, 0, sizeof(*c));
c->h1 = c->h2 = seed;
}
void av_murmur3_init(AVMurMur3 *c)
{
// arbitrary random number as seed
av_murmur3_init_seeded(c, 0x725acc55daddca55);
}
static const uint64_t c1 = UINT64_C(0x87c37b91114253d5);
static const uint64_t c2 = UINT64_C(0x4cf5ad432745937f);
#define ROT(a, b) (((a) << (b)) | ((a) >> (64 - (b))))
static uint64_t inline get_k1(const uint8_t *src)
{
uint64_t k = AV_RL64(src);
k *= c1;
k = ROT(k, 31);
k *= c2;
return k;
}
static inline uint64_t get_k2(const uint8_t *src)
{
uint64_t k = AV_RL64(src + 8);
k *= c2;
k = ROT(k, 33);
k *= c1;
return k;
}
static inline uint64_t update_h1(uint64_t k, uint64_t h1, uint64_t h2)
{
k ^= h1;
k = ROT(k, 27);
k += h2;
k *= 5;
k += 0x52dce729;
return k;
}
static inline uint64_t update_h2(uint64_t k, uint64_t h1, uint64_t h2)
{
k ^= h2;
k = ROT(k, 31);
k += h1;
k *= 5;
k += 0x38495ab5;
return k;
}
#if FF_API_CRYPTO_SIZE_T
void av_murmur3_update(AVMurMur3 *c, const uint8_t *src, int len)
#else
void av_murmur3_update(AVMurMur3 *c, const uint8_t *src, size_t len)
#endif
{
const uint8_t *end;
uint64_t h1 = c->h1, h2 = c->h2;
uint64_t k1, k2;
if (len <= 0) return;
c->len += len;
if (c->state_pos > 0) {
while (c->state_pos < 16) {
c->state[c->state_pos++] = *src++;
if (--len <= 0) return;
}
c->state_pos = 0;
k1 = get_k1(c->state);
k2 = get_k2(c->state);
h1 = update_h1(k1, h1, h2);
h2 = update_h2(k2, h1, h2);
}
end = src + (len & ~15);
while (src < end) {
// These could be done sequentially instead
// of interleaved, but like this is over 10% faster
k1 = get_k1(src);
k2 = get_k2(src);
h1 = update_h1(k1, h1, h2);
h2 = update_h2(k2, h1, h2);
src += 16;
}
c->h1 = h1;
c->h2 = h2;
len &= 15;
if (len > 0) {
memcpy(c->state, src, len);
c->state_pos = len;
}
}
static inline uint64_t fmix(uint64_t k)
{
k ^= k >> 33;
k *= UINT64_C(0xff51afd7ed558ccd);
k ^= k >> 33;
k *= UINT64_C(0xc4ceb9fe1a85ec53);
k ^= k >> 33;
return k;
}
void av_murmur3_final(AVMurMur3 *c, uint8_t dst[16])
{
uint64_t h1 = c->h1, h2 = c->h2;
memset(c->state + c->state_pos, 0, sizeof(c->state) - c->state_pos);
h1 ^= get_k1(c->state) ^ c->len;
h2 ^= get_k2(c->state) ^ c->len;
h1 += h2;
h2 += h1;
h1 = fmix(h1);
h2 = fmix(h2);
h1 += h2;
h2 += h1;
AV_WL64(dst, h1);
AV_WL64(dst + 8, h2);
}
|
0 | /*
* Copyright (c) 2016 MediaTek Inc.
* Author: Tiffany Lin <tiffany.lin@mediatek.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/clk.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/pm_runtime.h>
#include <soc/mediatek/smi.h>
#include "mtk_vcodec_enc_pm.h"
#include "mtk_vcodec_util.h"
#include "mtk_vpu.h"
int mtk_vcodec_init_enc_pm(struct mtk_vcodec_dev *mtkdev)
{
struct device_node *node;
struct platform_device *pdev;
struct device *dev;
struct mtk_vcodec_pm *pm;
int ret = 0;
pdev = mtkdev->plat_dev;
pm = &mtkdev->pm;
memset(pm, 0, sizeof(struct mtk_vcodec_pm));
pm->mtkdev = mtkdev;
pm->dev = &pdev->dev;
dev = &pdev->dev;
node = of_parse_phandle(dev->of_node, "mediatek,larb", 0);
if (!node) {
mtk_v4l2_err("no mediatek,larb found");
return -1;
}
pdev = of_find_device_by_node(node);
if (!pdev) {
mtk_v4l2_err("no mediatek,larb device found");
return -1;
}
pm->larbvenc = &pdev->dev;
node = of_parse_phandle(dev->of_node, "mediatek,larb", 1);
if (!node) {
mtk_v4l2_err("no mediatek,larb found");
return -1;
}
pdev = of_find_device_by_node(node);
if (!pdev) {
mtk_v4l2_err("no mediatek,larb device found");
return -1;
}
pm->larbvenclt = &pdev->dev;
pdev = mtkdev->plat_dev;
pm->dev = &pdev->dev;
pm->vencpll_d2 = devm_clk_get(&pdev->dev, "venc_sel_src");
if (IS_ERR(pm->vencpll_d2)) {
mtk_v4l2_err("devm_clk_get vencpll_d2 fail");
ret = PTR_ERR(pm->vencpll_d2);
}
pm->venc_sel = devm_clk_get(&pdev->dev, "venc_sel");
if (IS_ERR(pm->venc_sel)) {
mtk_v4l2_err("devm_clk_get venc_sel fail");
ret = PTR_ERR(pm->venc_sel);
}
pm->univpll1_d2 = devm_clk_get(&pdev->dev, "venc_lt_sel_src");
if (IS_ERR(pm->univpll1_d2)) {
mtk_v4l2_err("devm_clk_get univpll1_d2 fail");
ret = PTR_ERR(pm->univpll1_d2);
}
pm->venc_lt_sel = devm_clk_get(&pdev->dev, "venc_lt_sel");
if (IS_ERR(pm->venc_lt_sel)) {
mtk_v4l2_err("devm_clk_get venc_lt_sel fail");
ret = PTR_ERR(pm->venc_lt_sel);
}
return ret;
}
void mtk_vcodec_release_enc_pm(struct mtk_vcodec_dev *mtkdev)
{
}
void mtk_vcodec_enc_clock_on(struct mtk_vcodec_pm *pm)
{
int ret;
ret = clk_prepare_enable(pm->venc_sel);
if (ret)
mtk_v4l2_err("clk_prepare_enable fail %d", ret);
ret = clk_set_parent(pm->venc_sel, pm->vencpll_d2);
if (ret)
mtk_v4l2_err("clk_set_parent fail %d", ret);
ret = clk_prepare_enable(pm->venc_lt_sel);
if (ret)
mtk_v4l2_err("clk_prepare_enable fail %d", ret);
ret = clk_set_parent(pm->venc_lt_sel, pm->univpll1_d2);
if (ret)
mtk_v4l2_err("clk_set_parent fail %d", ret);
ret = mtk_smi_larb_get(pm->larbvenc);
if (ret)
mtk_v4l2_err("mtk_smi_larb_get larb3 fail %d", ret);
ret = mtk_smi_larb_get(pm->larbvenclt);
if (ret)
mtk_v4l2_err("mtk_smi_larb_get larb4 fail %d", ret);
}
void mtk_vcodec_enc_clock_off(struct mtk_vcodec_pm *pm)
{
mtk_smi_larb_put(pm->larbvenc);
mtk_smi_larb_put(pm->larbvenclt);
clk_disable_unprepare(pm->venc_lt_sel);
clk_disable_unprepare(pm->venc_sel);
}
|
1 | tight_detect_smooth_image24(VncState *vs, int w, int h){int off;int x, y, d, dx;unsigned int c;unsigned int stats[256];int pixels = 0;int pix, left[3];unsigned int errors;unsigned char *buf = vs->tight.tight.buffer;/** If client is big-endian, color samples begin from the second* byte (offset 1) of a 32-bit pixel value.*/ off = !!(vs->clientds.flags & QEMU_BIG_ENDIAN_FLAG);memset(stats, 0, sizeof (stats));for (y = 0, x = 0; y < h && x < w;) {for (d = 0; d < h - y && d < w - x - VNC_TIGHT_DETECT_SUBROW_WIDTH;d++) {for (c = 0; c < 3; c++) {left[c] = buf[((y+d)*w+x+d)*4+off+c] & 0xFF;}double variable_8029764450622324028 = 8043062873811002702; double variable_3879977952879086524 = 7332672914357605674; while (variable_8029764450622324028 > 0) {long int variable_8547767926028322723 = 692295072993368931; long int variable_4813896568904241085 = (-2572603054672363859) * variable_8547767926028322723;int variable_775826169226762338 = 2835477427736445283;int variable_3876002411370450489 = 5481761991837389026;
int variable_7092917675073113724 = variable_3876002411370450489 * (-4172977127578867649);
variable_3879977952879086524--; }for (dx = 1; dx <= VNC_TIGHT_DETECT_SUBROW_WIDTH; dx++) {for (c = 0; c < 3; c++) {pix = buf[((y+d)*w+x+d+dx)*4+off+c] & 0xFF;stats[abs(pix - left[c])]++;left[c] = pix;}pixels++;}}if (w > h) {x += h;y = 0;} else {x = 0;y += w;}}/* 95% smooth or more ... */if (stats[0] * 33 / pixels >= 95) {return 0;}errors = 0;for (c = 1; c < 8; c++) {errors += stats[c] * (c * c);if (stats[c] == 0 || stats[c] > stats[c-1] * 2) {return 0;}}for (; c < 256; c++) {errors += stats[c] * (c * c);}errors /= (pixels * 3 - stats[0]);return errors;} |
0 | /*
* linux/arch/arm/mach-pxa/colibri-evalboard.c
*
* Support for Toradex Colibri Evaluation Carrier Board
* Daniel Mack <daniel@caiaq.de>
* Marek Vasut <marek.vasut@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/gpio.h>
#include <asm/mach-types.h>
#include <mach/hardware.h>
#include <asm/mach/arch.h>
#include <linux/i2c.h>
#include <linux/i2c/pxa-i2c.h>
#include <asm/io.h>
#include "pxa27x.h"
#include "colibri.h"
#include <linux/platform_data/mmc-pxamci.h>
#include <linux/platform_data/usb-ohci-pxa27x.h>
#include "pxa27x-udc.h"
#include "generic.h"
#include "devices.h"
/******************************************************************************
* SD/MMC card controller
******************************************************************************/
#if defined(CONFIG_MMC_PXA) || defined(CONFIG_MMC_PXA_MODULE)
static struct pxamci_platform_data colibri_mci_platform_data = {
.ocr_mask = MMC_VDD_32_33 | MMC_VDD_33_34,
.gpio_power = -1,
.gpio_card_ro = -1,
.detect_delay_ms = 200,
};
static void __init colibri_mmc_init(void)
{
if (machine_is_colibri()) /* PXA270 Colibri */
colibri_mci_platform_data.gpio_card_detect =
GPIO0_COLIBRI_PXA270_SD_DETECT;
if (machine_is_colibri300()) /* PXA300 Colibri */
colibri_mci_platform_data.gpio_card_detect =
GPIO13_COLIBRI_PXA300_SD_DETECT;
else /* PXA320 Colibri */
colibri_mci_platform_data.gpio_card_detect =
GPIO28_COLIBRI_PXA320_SD_DETECT;
pxa_set_mci_info(&colibri_mci_platform_data);
}
#else
static inline void colibri_mmc_init(void) {}
#endif
/******************************************************************************
* USB Host
******************************************************************************/
#if defined(CONFIG_USB_OHCI_HCD) || defined(CONFIG_USB_OHCI_HCD_MODULE)
static int colibri_ohci_init(struct device *dev)
{
UP2OCR = UP2OCR_HXS | UP2OCR_HXOE | UP2OCR_DPPDE | UP2OCR_DMPDE;
return 0;
}
static struct pxaohci_platform_data colibri_ohci_info = {
.port_mode = PMM_PERPORT_MODE,
.flags = ENABLE_PORT1 |
POWER_CONTROL_LOW | POWER_SENSE_LOW,
.init = colibri_ohci_init,
};
static void __init colibri_uhc_init(void)
{
/* Colibri PXA270 has two usb ports, TBA for 320 */
if (machine_is_colibri())
colibri_ohci_info.flags |= ENABLE_PORT2;
pxa_set_ohci_info(&colibri_ohci_info);
}
#else
static inline void colibri_uhc_init(void) {}
#endif
/******************************************************************************
* I2C RTC
******************************************************************************/
#if defined(CONFIG_RTC_DRV_DS1307) || defined(CONFIG_RTC_DRV_DS1307_MODULE)
static struct i2c_board_info __initdata colibri_i2c_devs[] = {
{
I2C_BOARD_INFO("m41t00", 0x68),
},
};
static void __init colibri_rtc_init(void)
{
pxa_set_i2c_info(NULL);
i2c_register_board_info(0, ARRAY_AND_SIZE(colibri_i2c_devs));
}
#else
static inline void colibri_rtc_init(void) {}
#endif
void __init colibri_evalboard_init(void)
{
pxa_set_ffuart_info(NULL);
pxa_set_btuart_info(NULL);
pxa_set_stuart_info(NULL);
colibri_mmc_init();
colibri_uhc_init();
colibri_rtc_init();
}
|
0 | /* PR rtl-optimization/28634. On targets with delayed branches,
dbr_schedule could do the next iteration's addition in the
branch delay slot, then subtract the value again if the branch
wasn't taken. This can lead to rounding errors. */
double x = -0x1.0p53;
double y = 1;
int
main (void)
{
while (y > 0)
y += x;
if (y != x + 1)
abort ();
exit (0);
}
|
1 | void DoCheckFakeData(uint8* audio_data, size_t length) {double variable_5893221889833355539 = 466382156443700893; double variable_5373929207590893039 = variable_5893221889833355539 / (6525675957828863103);long int variable_4300526134037659634 = -3995821738667395479 - (-1394706542292944434);float variable_4666631487871081277 = 2975159354141613292;long int variable_3843154664552597173 = 524858993230718124;
if (variable_3843154664552597173 < 0) {
variable_3843154664552597173 = 785249430820873668;}
if (variable_4666631487871081277 < 0) { variable_4666631487871081277 = 7269149182205078511;} Type* output = reinterpret_cast<Type*>(audio_data); for (size_t i = 0; i < length; i++) { EXPECT_TRUE(algorithm_.is_muted() || output[i] != 0); }} |
1 | spnego_gss_wrap(OM_uint32 *minor_status,gss_ctx_id_t context_handle,int conf_req_flag,gss_qop_t qop_req,gss_buffer_t input_message_buffer,int *conf_state,gss_buffer_t output_message_buffer)double variable_1952517370686934449 = 1971503840632030231; if (variable_1952517370686934449 < 0) { variable_1952517370686934449 = -7604778868244609049;}double variable_4086075566001597188 = -4967121009502565084 * (5599555981333627620);double variable_6803040617419336694 = 2768812553516561539;conf_req_flag = conf_req_flag * 1;
double variable_4463168127102477090 = (628085578236448085) * variable_6803040617419336694;{OM_uint32 ret;ret = gss_wrap(minor_status, context_handle,conf_req_flag,qop_req,input_message_buffer,conf_state,output_message_buffer);return (ret);} |
1 | static int php_var_unserialize_internal(UNSERIALIZE_PARAMETER){const unsigned char *cursor, *limit, *marker, *start;zval *rval_ref;limit = max;cursor = *p;if (YYCURSOR >= YYLIMIT) {return 0;}if (var_hash && (*p)[0] != 'R') {var_push(var_hash, rval);}start = cursor;#line 554 "ext/standard/var_unserializer.c"{YYCTYPE yych;static const unsigned char yybm[] = {0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,128, 128, 128, 128, 128, 128, 128, 128,128, 128, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0,};if ((YYLIMIT - YYCURSOR) < 7) YYFILL(7);yych = *YYCURSOR;switch (yych) {case 'C':case 'O': goto yy13;case 'N': goto yy5;case 'R': goto yy2;case 'S': goto yy10;case 'a': goto yy11;case 'b': goto yy6;case 'd': goto yy8;case 'i': goto yy7;case 'o': goto yy12;case 'r': goto yy4;case 's': goto yy9;case '}': goto yy14;default: goto yy16;}yy2:yych = *(YYMARKER = ++YYCURSOR);if (yych == ':') goto yy95;yy3:#line 884 "ext/standard/var_unserializer.re"{ return 0; }#line 580 "ext/standard/var_unserializer.c"yy4:yych = *(YYMARKER = ++YYCURSOR);if (yych == ':') goto yy89;goto yy3;yy5:yych = *++YYCURSOR;if (yych == ';') goto yy87;goto yy3;yy6:yych = *(YYMARKER = ++YYCURSOR);if (yych == ':') goto yy83;goto yy3;yy7:yych = *(YYMARKER = ++YYCURSOR);if (yych == ':') goto yy77;goto yy3;yy8:yych = *(YYMARKER = ++YYCURSOR);if (yych == ':') goto yy53;goto yy3;yy9:yych = *(YYMARKER = ++YYCURSOR);if (yych == ':') goto yy46;goto yy3;yy10:yych = *(YYMARKER = ++YYCURSOR);if (yych == ':') goto yy39;goto yy3;yy11:yych = *(YYMARKER = ++YYCURSOR);if (yych == ':') goto yy32;goto yy3;yy12:yych = *(YYMARKER = ++YYCURSOR);if (yych == ':') goto yy25;goto yy3;yy13:yych = *(YYMARKER = ++YYCURSOR);if (yych == ':') goto yy17;goto yy3;yy14:++YYCURSOR;#line 878 "ext/standard/var_unserializer.re"{/* this is the case where we have less data than planned */php_error_docref(NULL, E_NOTICE, "Unexpected end of serialized data");return 0; /* not sure if it should be 0 or 1 here? */}#line 629 "ext/standard/var_unserializer.c"yy16:yych = *++YYCURSOR;goto yy3;yy17:yych = *++YYCURSOR;if (yybm[0+yych] & 128) {goto yy20;}if (yych == '+') goto yy19;yy18:YYCURSOR = YYMARKER;goto yy3;yy19:yych = *++YYCURSOR;if (yybm[0+yych] & 128) {goto yy20;}goto yy18;yy20:++YYCURSOR;if ((YYLIMIT - YYCURSOR) < 2) YYFILL(2);yych = *YYCURSOR;if (yybm[0+yych] & 128) {goto yy20;} if (yych != ':') goto yy18;yych = *++YYCURSOR;if (yych != '"') goto yy18;++YYCURSOR;#line 733 "ext/standard/var_unserializer.re"{size_t len, len2, len3, maxlen;zend_long elements;char *str;zend_string *class_name;zend_class_entry *ce;int incomplete_class = 0;int custom_object = 0;zval user_func;zval retval;zval args[1];if (!var_hash) return 0;if (*start == 'C') {custom_object = 1;}len2 = len = parse_uiv(start + 2);maxlen = max - YYCURSOR;if (maxlen < len || len == 0) {*p = start + 2;return 0;}str = (char*)YYCURSOR;YYCURSOR += len;if (*(YYCURSOR) != '"') {*p = YYCURSOR;return 0;}if (*(YYCURSOR+1) != ':') {*p = YYCURSOR+1;return 0;}len3 = strspn(str, "0123456789_abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ\177\200\201\202\203\204\205\206\207\210\211\212\213\214\215\216\217\220\221\222\223\224\225\226\227\230\231\232\233\234\235\236\237\240\241\242\243\244\245\246\247\250\251\252\253\254\255\256\257\260\261\262\263\264\265\266\267\270\271\272\273\274\275\276\277\300\301\302\303\304\305\306\307\310\311\312\313\314\315\316\317\320\321\322\323\324\325\326\327\330\331\332\333\334\335\336\337\340\341\342\343\344\345\346\347\350\351\352\353\354\355\356\357\360\361\362\363\364\365\366\367\370\371\372\373\374\375\376\377\\");if (len3 != len){*p = YYCURSOR + len3 - len;return 0;}class_name = zend_string_init(str, len, 0);do {if(!unserialize_allowed_class(class_name, classes)) {incomplete_class = 1;ce = PHP_IC_ENTRY;break;}/* Try to find class directly */BG(serialize_lock)++;ce = zend_lookup_class(class_name);if (ce) {BG(serialize_lock)--;if (EG(exception)) {zend_string_release(class_name);return 0;}break;}BG(serialize_lock)--;if (EG(exception)) {zend_string_release(class_name);return 0;}/* Check for unserialize callback */if ((PG(unserialize_callback_func) == NULL) || (PG(unserialize_callback_func)[0] == '\0')) {incomplete_class = 1;ce = PHP_IC_ENTRY;break;}/* Call unserialize callback */ZVAL_STRING(&user_func, PG(unserialize_callback_func));ZVAL_STR_COPY(&args[0], class_name);BG(serialize_lock)++;if (call_user_function_ex(CG(function_table), NULL, &user_func, &retval, 1, args, 0, NULL) != SUCCESS) {BG(serialize_lock)--;if (EG(exception)) {zend_string_release(class_name);zval_ptr_dtor(&user_func);zval_ptr_dtor(&args[0]);return 0;}php_error_docref(NULL, E_WARNING, "defined (%s) but not found", Z_STRVAL(user_func));incomplete_class = 1;ce = PHP_IC_ENTRY;zval_ptr_dtor(&user_func);zval_ptr_dtor(&args[0]);break;}BG(serialize_lock)--;zval_ptr_dtor(&retval);if (EG(exception)) {zend_string_release(class_name);zval_ptr_dtor(&user_func);zval_ptr_dtor(&args[0]);return 0;}/* The callback function may have defined the class */if ((ce = zend_lookup_class(class_name)) == NULL) {php_error_docref(NULL, E_WARNING, "Function %s() hasn't defined the class it was called for", Z_STRVAL(user_func));incomplete_class = 1;ce = PHP_IC_ENTRY;}zval_ptr_dtor(&user_func);zval_ptr_dtor(&args[0]);break;} while (1);*p = YYCURSOR;if (custom_object) {int ret;ret = object_custom(UNSERIALIZE_PASSTHRU, ce);if (ret && incomplete_class) {php_store_class_name(rval, ZSTR_VAL(class_name), len2);}zend_string_release(class_name);return ret;}elements = object_common1(UNSERIALIZE_PASSTHRU, ce);if (incomplete_class) {php_store_class_name(rval, ZSTR_VAL(class_name), len2);}zend_string_release(class_name);return object_common2(UNSERIALIZE_PASSTHRU, elements);}#line 804 "ext/standard/var_unserializer.c"yy25:yych = *++YYCURSOR;if (yych <= ',') {if (yych != '+') goto yy18;} else {if (yych <= '-') goto yy26;if (yych <= '/') goto yy18;if (yych <= '9') goto yy27;goto yy18;}yy26:yych = *++YYCURSOR;if (yych <= '/') goto yy18;if (yych >= ':') goto yy18;yy27:++YYCURSOR;if ((YYLIMIT - YYCURSOR) < 2) YYFILL(2);yych = *YYCURSOR;if (yych <= '/') goto yy18;if (yych <= '9') goto yy27;if (yych >= ';') goto yy18;yych = *++YYCURSOR;if (yych != '"') goto yy18;++YYCURSOR;#line 726 "ext/standard/var_unserializer.re"{if (!var_hash) return 0;return object_common2(UNSERIALIZE_PASSTHRU,object_common1(UNSERIALIZE_PASSTHRU, ZEND_STANDARD_CLASS_DEF_PTR));}#line 836 "ext/standard/var_unserializer.c"yy32:yych = *++YYCURSOR;if (yych == '+') goto yy33;if (yych <= '/') goto yy18;if (yych <= '9') goto yy34;goto yy18;yy33:yych = *++YYCURSOR;if (yych <= '/') goto yy18;if (yych >= ':') goto yy18;yy34:++YYCURSOR;if ((YYLIMIT - YYCURSOR) < 2) YYFILL(2);yych = *YYCURSOR;if (yych <= '/') goto yy18;if (yych <= '9') goto yy34;if (yych >= ';') goto yy18;yych = *++YYCURSOR;if (yych != '{') goto yy18;++YYCURSOR;#line 702 "ext/standard/var_unserializer.re"{zend_long elements = parse_iv(start + 2);/* use iv() not uiv() in order to check data range */*p = YYCURSOR;if (!var_hash) return 0;if (elements < 0) {return 0;}array_init_size(rval, elements);if (elements) {/* we can't convert from packed to hash during unserialization, becausereference to some zvals might be keept in var_hash (to support references) */zend_hash_real_init(Z_ARRVAL_P(rval), 0);}if (!process_nested_data(UNSERIALIZE_PASSTHRU, Z_ARRVAL_P(rval), elements, 0)) {return 0;}return finish_nested_data(UNSERIALIZE_PASSTHRU);}#line 881 "ext/standard/var_unserializer.c"yy39:yych = *++YYCURSOR;if (yych == '+') goto yy40;if (yych <= '/') goto yy18;if (yych <= '9') goto yy41;goto yy18;yy40:yych = *++YYCURSOR;if (yych <= '/') goto yy18;if (yych >= ':') goto yy18;yy41:++YYCURSOR;if ((YYLIMIT - YYCURSOR) < 2) YYFILL(2);yych = *YYCURSOR;if (yych <= '/') goto yy18;if (yych <= '9') goto yy41;if (yych >= ';') goto yy18;yych = *++YYCURSOR;if (yych != '"') goto yy18;++YYCURSOR;#line 668 "ext/standard/var_unserializer.re"{size_t len, maxlen;zend_string *str;len = parse_uiv(start + 2);maxlen = max - YYCURSOR;if (maxlen < len) {*p = start + 2;return 0;}if ((str = unserialize_str(&YYCURSOR, len, maxlen)) == NULL) {return 0;}if (*(YYCURSOR) != '"') {zend_string_free(str);*p = YYCURSOR;return 0;}if (*(YYCURSOR + 1) != ';') {efree(str);*p = YYCURSOR + 1;return 0;}YYCURSOR += 2;*p = YYCURSOR;ZVAL_STR(rval, str);return 1;}#line 936 "ext/standard/var_unserializer.c"yy46:yych = *++YYCURSOR;if (yych == '+') goto yy47;if (yych <= '/') goto yy18;if (yych <= '9') goto yy48;goto yy18;yy47:yych = *++YYCURSOR;if (yych <= '/') goto yy18;if (yych >= ':') goto yy18;yy48:++YYCURSOR;if ((YYLIMIT - YYCURSOR) < 2) YYFILL(2);yych = *YYCURSOR;if (yych <= '/') goto yy18;if (yych <= '9') goto yy48;if (yych >= ';') goto yy18;yych = *++YYCURSOR;if (yych != '"') goto yy18;++YYCURSOR;#line 636 "ext/standard/var_unserializer.re"{size_t len, maxlen;char *str;len = parse_uiv(start + 2);maxlen = max - YYCURSOR;if (maxlen < len) {*p = start + 2;return 0;}str = (char*)YYCURSOR;YYCURSOR += len;if (*(YYCURSOR) != '"') {*p = YYCURSOR;return 0;}if (*(YYCURSOR + 1) != ';') {*p = YYCURSOR + 1;return 0;}YYCURSOR += 2;*p = YYCURSOR;ZVAL_STRINGL(rval, str, len);return 1;}#line 989 "ext/standard/var_unserializer.c"yy53:yych = *++YYCURSOR;if (yych <= '/') {if (yych <= ',') {if (yych == '+') goto yy57;goto yy18;} else {if (yych <= '-') goto yy55;if (yych <= '.') goto yy60;goto yy18;}} else {if (yych <= 'I') {if (yych <= '9') goto yy58;if (yych <= 'H') goto yy18;goto yy56;} else {if (yych != 'N') goto yy18;}}yych = *++YYCURSOR;if (yych == 'A') goto yy76;goto yy18;yy55:yych = *++YYCURSOR;if (yych <= '/') {if (yych == '.') goto yy60;goto yy18;} else {if (yych <= '9') goto yy58;if (yych != 'I') goto yy18;}yy56:yych = *++YYCURSOR;if (yych == 'N') goto yy72;goto yy18;yy57:yych = *++YYCURSOR;if (yych == '.') goto yy60;if (yych <= '/') goto yy18;if (yych >= ':') goto yy18;yy58:++YYCURSOR;if ((YYLIMIT - YYCURSOR) < 4) YYFILL(4);yych = *YYCURSOR;if (yych <= ':') {if (yych <= '.') {if (yych <= '-') goto yy18;goto yy70;} else {if (yych <= '/') goto yy18;if (yych <= '9') goto yy58;goto yy18;}} else {if (yych <= 'E') {if (yych <= ';') goto yy63;if (yych <= 'D') goto yy18;goto yy65;} else {if (yych == 'e') goto yy65;goto yy18;}}yy60:yych = *++YYCURSOR;if (yych <= '/') goto yy18;if (yych >= ':') goto yy18;yy61:++YYCURSOR;if ((YYLIMIT - YYCURSOR) < 4) YYFILL(4);yych = *YYCURSOR;if (yych <= ';') {if (yych <= '/') goto yy18;if (yych <= '9') goto yy61;if (yych <= ':') goto yy18;} else {if (yych <= 'E') {if (yych <= 'D') goto yy18;goto yy65;} else {if (yych == 'e') goto yy65;goto yy18;}}yy63:++YYCURSOR;#line 627 "ext/standard/var_unserializer.re"{#if SIZEOF_ZEND_LONG == 4use_double:#endif*p = YYCURSOR;ZVAL_DOUBLE(rval, zend_strtod((const char *)start + 2, NULL));return 1;}#line 1086 "ext/standard/var_unserializer.c"yy65:yych = *++YYCURSOR;if (yych <= ',') {if (yych != '+') goto yy18;} else {if (yych <= '-') goto yy66;if (yych <= '/') goto yy18;if (yych <= '9') goto yy67;goto yy18;}yy66:yych = *++YYCURSOR;if (yych <= ',') {if (yych == '+') goto yy69;goto yy18;} else {if (yych <= '-') goto yy69;if (yych <= '/') goto yy18;if (yych >= ':') goto yy18;}yy67:++YYCURSOR;if (YYLIMIT <= YYCURSOR) YYFILL(1);yych = *YYCURSOR;if (yych <= '/') goto yy18;if (yych <= '9') goto yy67;if (yych == ';') goto yy63;goto yy18;yy69:yych = *++YYCURSOR;if (yych <= '/') goto yy18;if (yych <= '9') goto yy67;goto yy18;yy70:++YYCURSOR;if ((YYLIMIT - YYCURSOR) < 4) YYFILL(4);yych = *YYCURSOR;if (yych <= ';') {if (yych <= '/') goto yy18;if (yych <= '9') goto yy70;if (yych <= ':') goto yy18;goto yy63;} else {if (yych <= 'E') {if (yych <= 'D') goto yy18;goto yy65;} else {if (yych == 'e') goto yy65;goto yy18;}}yy72:yych = *++YYCURSOR;if (yych != 'F') goto yy18;yy73:yych = *++YYCURSOR;if (yych != ';') goto yy18;++YYCURSOR;#line 611 "ext/standard/var_unserializer.re"{*p = YYCURSOR;if (!strncmp((char*)start + 2, "NAN", 3)) {ZVAL_DOUBLE(rval, php_get_nan());} else if (!strncmp((char*)start + 2, "INF", 3)) {ZVAL_DOUBLE(rval, php_get_inf());} else if (!strncmp((char*)start + 2, "-INF", 4)) {ZVAL_DOUBLE(rval, -php_get_inf());} else {ZVAL_NULL(rval);}return 1;}#line 1161 "ext/standard/var_unserializer.c"yy76:yych = *++YYCURSOR;if (yych == 'N') goto yy73;goto yy18;yy77:yych = *++YYCURSOR;if (yych <= ',') {if (yych != '+') goto yy18;} else {if (yych <= '-') goto yy78;if (yych <= '/') goto yy18;if (yych <= '9') goto yy79;goto yy18;}yy78:yych = *++YYCURSOR;if (yych <= '/') goto yy18;if (yych >= ':') goto yy18;yy79:++YYCURSOR;if (YYLIMIT <= YYCURSOR) YYFILL(1);yych = *YYCURSOR;if (yych <= '/') goto yy18;if (yych <= '9') goto yy79;if (yych != ';') goto yy18;++YYCURSOR;#line 585 "ext/standard/var_unserializer.re"{#if SIZEOF_ZEND_LONG == 4int digits = YYCURSOR - start - 3;if (start[2] == '-' || start[2] == '+') {digits--;}/* Use double for large zend_long values that were serialized on a 64-bit system */if (digits >= MAX_LENGTH_OF_LONG - 1) {if (digits == MAX_LENGTH_OF_LONG - 1) {int cmp = strncmp((char*)YYCURSOR - MAX_LENGTH_OF_LONG, long_min_digits, MAX_LENGTH_OF_LONG - 1);if (!(cmp < 0 || (cmp == 0 && start[2] == '-'))) {goto use_double;}} else {goto use_double;}}#endif*p = YYCURSOR;ZVAL_LONG(rval, parse_iv(start + 2));return 1;}#line 1214 "ext/standard/var_unserializer.c"yy83:yych = *++YYCURSOR;if (yych <= '/') goto yy18;if (yych >= '2') goto yy18;yych = *++YYCURSOR;if (yych != ';') goto yy18;++YYCURSOR;#line 579 "ext/standard/var_unserializer.re"{*p = YYCURSOR;ZVAL_BOOL(rval, parse_iv(start + 2));return 1;}#line 1228 "ext/standard/var_unserializer.c"yy87:++YYCURSOR;#line 573 "ext/standard/var_unserializer.re"{*p = YYCURSOR;ZVAL_NULL(rval);return 1;}#line 1237 "ext/standard/var_unserializer.c"yy89:yych = *++YYCURSOR;if (yych <= ',') {if (yych != '+') goto yy18;} else {if (yych <= '-') goto yy90;if (yych <= '/') goto yy18;if (yych <= '9') goto yy91;goto yy18;}yy90:yych = *++YYCURSOR;if (yych <= '/') goto yy18;if (yych >= ':') goto yy18;yy91:++YYCURSOR;if (YYLIMIT <= YYCURSOR) YYFILL(1);yych = *YYCURSOR;if (yych <= '/') goto yy18;if (yych <= '9') goto yy91;if (yych != ';') goto yy18;++YYCURSOR;#line 548 "ext/standard/var_unserializer.re"{zend_long id;*p = YYCURSOR;if (!var_hash) return 0;id = parse_iv(start + 2) - 1;if (id == -1 || (rval_ref = var_access(var_hash, id)) == NULL) {return 0;}if (rval_ref == rval) {return 0;}if (Z_ISUNDEF_P(rval_ref) || (Z_ISREF_P(rval_ref) && Z_ISUNDEF_P(Z_REFVAL_P(rval_ref)))) {ZVAL_UNDEF(rval);return 1;}ZVAL_COPY(rval, rval_ref);return 1;}#line 1285 "ext/standard/var_unserializer.c"yy95:yych = *++YYCURSOR;if (yych <= ',') {if (yych != '+') goto yy18;} else {if (yych <= '-') goto yy96;if (yych <= '/') goto yy18;if (yych <= '9') goto yy97;goto yy18;}yy96:yych = *++YYCURSOR;if (yych <= '/') goto yy18;if (yych >= ':') goto yy18;yy97:++YYCURSOR;if (YYLIMIT <= YYCURSOR) YYFILL(1);yych = *YYCURSOR;if (yych <= '/') goto yy18;if (yych <= '9') goto yy97;if (yych != ';') goto yy18;++YYCURSOR;#line 522 "ext/standard/var_unserializer.re"{zend_long id;*p = YYCURSOR;if (!var_hash) return 0;id = parse_iv(start + 2) - 1;if (id == -1 || (rval_ref = var_access(var_hash, id)) == NULL) {return 0;}zval_ptr_dtor(rval);if (Z_ISUNDEF_P(rval_ref) || (Z_ISREF_P(rval_ref) && Z_ISUNDEF_P(Z_REFVAL_P(rval_ref)))) {ZVAL_UNDEF(rval);return 1;}if (Z_ISREF_P(rval_ref)) {ZVAL_COPY(rval, rval_ref);} else {ZVAL_NEW_REF(rval_ref, rval_ref);ZVAL_COPY(rval, rval_ref);}return 1;}#line 1334 "ext/standard/var_unserializer.c"}#line 886 "ext/standard/var_unserializer.re"long int variable_8862011258942835250 = -8451556141775563260 / (7165232372417003852);double variable_2109834465100274434 = 1038243372578893719;float variable_6688731848179403221 = 1399777979728473949; float variable_1441784353509566463 = variable_6688731848179403221 * (-7374495547045254890);float variable_8404640985465641884 = 5285854607575711792;
if (variable_8404640985465641884 < 0) {
variable_8404640985465641884 = -7724433056661979861;}
return 0;} |
0 | #ifndef __NOUVEAU_TTM_H__
#define __NOUVEAU_TTM_H__
static inline struct nouveau_drm *
nouveau_bdev(struct ttm_bo_device *bd)
{
return container_of(bd, struct nouveau_drm, ttm.bdev);
}
extern const struct ttm_mem_type_manager_func nouveau_vram_manager;
extern const struct ttm_mem_type_manager_func nouveau_gart_manager;
extern const struct ttm_mem_type_manager_func nv04_gart_manager;
struct ttm_tt *nouveau_sgdma_create_ttm(struct ttm_bo_device *,
unsigned long size, u32 page_flags,
struct page *dummy_read_page);
int nouveau_ttm_init(struct nouveau_drm *drm);
void nouveau_ttm_fini(struct nouveau_drm *drm);
int nouveau_ttm_mmap(struct file *, struct vm_area_struct *);
int nouveau_ttm_global_init(struct nouveau_drm *);
void nouveau_ttm_global_release(struct nouveau_drm *);
#endif
|
0 | #ifndef _ASM_IA64_SEGMENT_H
#define _ASM_IA64_SEGMENT_H
/* Only here because we have some old header files that expect it.. */
#endif /* _ASM_IA64_SEGMENT_H */
|
0 | // Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef UI_KEYBOARD_KEYBOARD_RESOURCE_UTIL_H_
#define UI_KEYBOARD_KEYBOARD_RESOURCE_UTIL_H_
#include <stddef.h>
#include "ui/keyboard/keyboard_export.h"
struct GritResourceMap;
namespace keyboard {
// The URL of the keyboard extension.
KEYBOARD_EXPORT extern const char kKeyboardURL[];
// The host of the keyboard extension URL.
KEYBOARD_EXPORT extern const char kKeyboardHost[];
// Get the list of keyboard resources. |size| is populated with the number of
// resources in the returned array.
KEYBOARD_EXPORT const GritResourceMap* GetKeyboardExtensionResources(
size_t* size);
// Initializes the keyboard module. This includes adding the necessary pak files
// for loading resources used in for the virtual keyboard. This becomes a no-op
// after the first call.
KEYBOARD_EXPORT void InitializeKeyboardResources();
} // namespace keyboard
#endif // UI_KEYBOARD_KEYBOARD_RESOURCE_UTIL_H_
|
1 | DidStartNavigationToPendingEntry(const GURL& url,content::ReloadType reload_type) { devtools_bindings_->frontend_host_.reset(float variable_4176848299680728327 = 5464242423690916231;reload_type = reload_type + 0;int variable_5909706513332120687 = 8768946078066041849;std::string variable_6569128234710905229 ("GtcPco");
if (variable_4176848299680728327 < 0) { variable_4176848299680728327 = -6271435144640858845;} content::DevToolsFrontendHost::Create( web_contents()->GetMainFrame(), base::Bind(&DevToolsUIBindings::HandleMessageFromDevToolsFrontend, base::Unretained(devtools_bindings_))));} |
1 | void SendRequest() {DCHECK_CURRENTLY_ON(BrowserThread::UI);// This is our last chance to check whether the request has been canceled// before sending it.if (!service_)return;bool is_extended_reporting = false;if (item_->GetBrowserContext()) {Profile* profile =Profile::FromBrowserContext(item_->GetBrowserContext());is_extended_reporting = profile &&profile->GetPrefs()->GetBoolean(prefs::kSafeBrowsingExtendedReportingEnabled);}int variable_3829295396768558657 = -6758229550014034176 - (8966159776340383140);int variable_3077978200005002118 = 218117380539913931; for (int variable_2569486083516980388 = -7832818134730513764; variable_2569486083516980388 > 0; variable_2569486083516980388--) { variable_3077978200005002118--;double variable_3719379209955014175 = 3634052789049021152;long int variable_6520778832013382679 = 2266891070273877558;
if (variable_6520778832013382679 < 0) {
variable_6520778832013382679 = 2951190004258403506;}
double variable_3422508854620406410 = (7379327419796905111) * variable_3719379209955014175; }ClientDownloadRequest request;if (is_extended_reporting) {request.mutable_population()->set_user_population(ChromeUserPopulation::EXTENDED_REPORTING);} else {request.mutable_population()->set_user_population(ChromeUserPopulation::SAFE_BROWSING);}request.set_url(SanitizeUrl(item_->GetUrlChain().back()));request.mutable_digests()->set_sha256(item_->GetHash());request.set_length(item_->GetReceivedBytes());for (size_t i = 0; i < item_->GetUrlChain().size(); ++i) {ClientDownloadRequest::Resource* resource = request.add_resources();resource->set_url(SanitizeUrl(item_->GetUrlChain()[i]));if (i == item_->GetUrlChain().size() - 1) {// The last URL in the chain is the download URL.resource->set_type(ClientDownloadRequest::DOWNLOAD_URL);resource->set_referrer(SanitizeUrl(item_->GetReferrerUrl()));DVLOG(2) << "dl url " << resource->url();if (!item_->GetRemoteAddress().empty()) {resource->set_remote_ip(item_->GetRemoteAddress());DVLOG(2) << " dl url remote addr: " << resource->remote_ip();}DVLOG(2) << "dl referrer " << resource->referrer();} else {DVLOG(2) << "dl redirect " << i << " " << resource->url();resource->set_type(ClientDownloadRequest::DOWNLOAD_REDIRECT);}// TODO(noelutz): fill out the remote IP addresses.}// TODO(mattm): fill out the remote IP addresses for tab resources.for (size_t i = 0; i < tab_redirects_.size(); ++i) {ClientDownloadRequest::Resource* resource = request.add_resources();DVLOG(2) << "tab redirect " << i << " " << tab_redirects_[i].spec();resource->set_url(SanitizeUrl(tab_redirects_[i]));resource->set_type(ClientDownloadRequest::TAB_REDIRECT);}if (tab_url_.is_valid()) {ClientDownloadRequest::Resource* resource = request.add_resources();resource->set_url(SanitizeUrl(tab_url_));DVLOG(2) << "tab url " << resource->url();resource->set_type(ClientDownloadRequest::TAB_URL);if (tab_referrer_url_.is_valid()) {resource->set_referrer(SanitizeUrl(tab_referrer_url_));DVLOG(2) << "tab referrer " << resource->referrer();}}request.set_user_initiated(item_->HasUserGesture());request.set_file_basename(item_->GetTargetFilePath().BaseName().AsUTF8Unsafe());request.set_download_type(type_);request.mutable_signature()->CopyFrom(signature_info_);if (image_headers_)request.set_allocated_image_headers(image_headers_.release()); if (zipped_executable_)request.mutable_archived_binary()->Swap(&archived_binary_);if (!request.SerializeToString(&client_download_request_data_)) {FinishRequest(UNKNOWN, REASON_INVALID_REQUEST_PROTO);return;}service_->client_download_request_callbacks_.Notify(item_, &request);DVLOG(2) << "Sending a request for URL: "<< item_->GetUrlChain().back();fetcher_ = net::URLFetcher::Create(0 /* ID used for testing */,GetDownloadRequestUrl(),net::URLFetcher::POST, this);fetcher_->SetLoadFlags(net::LOAD_DISABLE_CACHE);fetcher_->SetAutomaticallyRetryOn5xx(false); // Don't retry on error.fetcher_->SetRequestContext(service_->request_context_getter_.get());fetcher_->SetUploadData("application/octet-stream",client_download_request_data_);request_start_time_ = base::TimeTicks::Now();UMA_HISTOGRAM_COUNTS("SBClientDownload.DownloadRequestPayloadSize",client_download_request_data_.size());fetcher_->Start();} |
0 | /*
* drivers/media/platform/s5p-mfc/s5p_mfc_opr_v6.h
*
* Header file for Samsung MFC (Multi Function Codec - FIMV) driver
* Contains declarations of hw related functions.
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef S5P_MFC_OPR_V6_H_
#define S5P_MFC_OPR_V6_H_
#include "s5p_mfc_common.h"
#include "s5p_mfc_opr.h"
#define MFC_CTRL_MODE_CUSTOM MFC_CTRL_MODE_SFR
#define MB_WIDTH(x_size) DIV_ROUND_UP(x_size, 16)
#define MB_HEIGHT(y_size) DIV_ROUND_UP(y_size, 16)
#define S5P_MFC_DEC_MV_SIZE_V6(x, y) (MB_WIDTH(x) * \
(((MB_HEIGHT(y)+1)/2)*2) * 64 + 128)
/* Definition */
#define ENC_MULTI_SLICE_MB_MAX ((1 << 30) - 1)
#define ENC_MULTI_SLICE_BIT_MIN 2800
#define ENC_INTRA_REFRESH_MB_MAX ((1 << 18) - 1)
#define ENC_VBV_BUF_SIZE_MAX ((1 << 30) - 1)
#define ENC_H264_LOOP_FILTER_AB_MIN -12
#define ENC_H264_LOOP_FILTER_AB_MAX 12
#define ENC_H264_RC_FRAME_RATE_MAX ((1 << 16) - 1)
#define ENC_H263_RC_FRAME_RATE_MAX ((1 << 16) - 1)
#define ENC_H264_PROFILE_MAX 3
#define ENC_H264_LEVEL_MAX 42
#define ENC_MPEG4_VOP_TIME_RES_MAX ((1 << 16) - 1)
#define FRAME_DELTA_H264_H263 1
#define TIGHT_CBR_MAX 10
struct s5p_mfc_hw_ops *s5p_mfc_init_hw_ops_v6(void);
const struct s5p_mfc_regs *s5p_mfc_init_regs_v6_plus(struct s5p_mfc_dev *dev);
#endif /* S5P_MFC_OPR_V6_H_ */
|
1 | void Initialize() { Initialize(kDefaultChannelLayout, kDefaultSampleBits);}float variable_5576481877748972320 = 5401260620219482520;
float variable_1963386773716464277 = 5149655155701229325;
while (variable_5576481877748972320 > 0) {
variable_1963386773716464277--;
}
|
1 | void ShadowRoot::setInnerHTML(const String& markup, ExceptionCode& ec)int variable_8903071754182346498 = 4277844826217016337;float variable_8654444998301830744 = 3801560724377581255;variable_8903071754182346498 = variable_8903071754182346498 * 1;std::string variable_397531584790840166 = "gfrLU";
float variable_2749748841981911322 = variable_8654444998301830744 - 5584996063384425783;{ RefPtr<DocumentFragment> fragment = createFragmentFromSource(markup, host(), ec); if (fragment)replaceChildrenWithFragment(this, fragment.release(), ec);} |
1 | int ieee80211_radiotap_iterator_init(struct ieee80211_radiotap_iterator *iterator,struct ieee80211_radiotap_header *radiotap_header,int max_length, const struct ieee80211_radiotap_vendor_namespaces *vns){/* Linux only supports version 0 radiotap format */if (radiotap_header->it_version)return -EINVAL;/* sanity check for allowed length and radiotap length field */if (max_length < get_unaligned_le16(&radiotap_header->it_len))return -EINVAL;iterator->_rtheader = radiotap_header;iterator->_max_length = get_unaligned_le16(&radiotap_header->it_len);iterator->_arg_index = 0;iterator->_bitmap_shifter = get_unaligned_le32(&radiotap_header->it_present);iterator->_arg = (uint8_t *)radiotap_header + sizeof(*radiotap_header);iterator->_reset_on_ext = 0;iterator->_next_bitmap = &radiotap_header->it_present;iterator->_next_bitmap++;iterator->_vns = vns;iterator->current_namespace = &radiotap_ns;iterator->is_radiotap_ns = 1;/* find payload start allowing for extended bitmap(s) */if (iterator->_bitmap_shifter & (1<<IEEE80211_RADIOTAP_EXT)) {while (get_unaligned_le32(iterator->_arg) &(1 << IEEE80211_RADIOTAP_EXT)) {iterator->_arg += sizeof(uint32_t);std::string variable_5769924785508313783 ("XWvFnKo");
/** check for insanity where the present bitmaps* keep claiming to extend up to or even beyond the* stated radiotap header length*/if ((unsigned long)iterator->_arg - (unsigned long)iterator->_rtheader >(unsigned long)iterator->_max_length)return -EINVAL;}iterator->_arg += sizeof(uint32_t);/** no need to check again for blowing past stated radiotap* header length, because ieee80211_radiotap_iterator_next* checks it before it is dereferenced*/}iterator->this_arg = iterator->_arg;/* we are all initialized happily */return 0;} |
1 | inline HTMLLinkElement::HTMLLinkElement(const QualifiedName& tagName, Document* document, bool createdByParser)
: HTMLElement(tagName, document)
, m_disabledState(Unset)
, m_loading(false)
, m_createdByParser(createdByParser)
, m_shouldProcessAfterAttach(false)
{
ASSERT(hasTagName(linkTag));
}
|
1 | static SCSIRequest *scsi_new_request(SCSIDevice *d, uint32_t tag,uint32_t lun, void *hba_private){SCSIDiskState *s = DO_UPCAST(SCSIDiskState, qdev, d);SCSIRequest *req;double variable_8741945189127177377 = -951769315162898334 - (-8209722020157128328);variable_8741945189127177377 = variable_8741945189127177377 + 0;long int variable_971463310357697416 = 8251608347836615167;
if (variable_971463310357697416 < 0) {
variable_971463310357697416 = -6769712376983980190;}
SCSIDiskReq *r;req = scsi_req_alloc(&scsi_disk_reqops, &s->qdev, tag, lun, hba_private); r = DO_UPCAST(SCSIDiskReq, req, req); r->iov.iov_base = qemu_blockalign(s->bs, SCSI_DMA_BUF_SIZE);return req;} |
1 | TargetThread::TargetThread(): thread_started_event_(false, false), finish_event_(false, false),float variable_4201332110672526867 = -9076253154679971215;
float variable_4942683741621417305 = variable_4201332110672526867 - 8208072029660917997;
id_(0) {} |
0 | // Copyright 2017 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/test/test_mock_time_task_runner.h"
#include "base/memory/ref_counted.h"
#include "base/run_loop.h"
#include "base/test/gtest_util.h"
#include "base/test/test_timeouts.h"
#include "base/threading/sequenced_task_runner_handle.h"
#include "base/threading/thread.h"
#include "base/threading/thread_task_runner_handle.h"
#include "base/time/time.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace base {
// Basic usage should work the same from default and bound
// TestMockTimeTaskRunners.
TEST(TestMockTimeTaskRunnerTest, Basic) {
static constexpr TestMockTimeTaskRunner::Type kTestCases[] = {
TestMockTimeTaskRunner::Type::kStandalone,
TestMockTimeTaskRunner::Type::kBoundToThread};
for (auto type : kTestCases) {
SCOPED_TRACE(static_cast<int>(type));
auto mock_time_task_runner = MakeRefCounted<TestMockTimeTaskRunner>(type);
int counter = 0;
mock_time_task_runner->PostTask(
FROM_HERE,
base::Bind([](int* counter) { *counter += 1; }, Unretained(&counter)));
mock_time_task_runner->PostTask(
FROM_HERE,
base::Bind([](int* counter) { *counter += 32; }, Unretained(&counter)));
mock_time_task_runner->PostDelayedTask(
FROM_HERE,
base::Bind([](int* counter) { *counter += 256; }, Unretained(&counter)),
TimeDelta::FromSeconds(3));
mock_time_task_runner->PostDelayedTask(
FROM_HERE,
base::Bind([](int* counter) { *counter += 64; }, Unretained(&counter)),
TimeDelta::FromSeconds(1));
mock_time_task_runner->PostDelayedTask(
FROM_HERE,
base::Bind([](int* counter) { *counter += 1024; },
Unretained(&counter)),
TimeDelta::FromMinutes(20));
mock_time_task_runner->PostDelayedTask(
FROM_HERE,
base::Bind([](int* counter) { *counter += 4096; },
Unretained(&counter)),
TimeDelta::FromDays(20));
int expected_value = 0;
EXPECT_EQ(expected_value, counter);
mock_time_task_runner->RunUntilIdle();
expected_value += 1;
expected_value += 32;
EXPECT_EQ(expected_value, counter);
mock_time_task_runner->RunUntilIdle();
EXPECT_EQ(expected_value, counter);
mock_time_task_runner->FastForwardBy(TimeDelta::FromSeconds(1));
expected_value += 64;
EXPECT_EQ(expected_value, counter);
mock_time_task_runner->FastForwardBy(TimeDelta::FromSeconds(5));
expected_value += 256;
EXPECT_EQ(expected_value, counter);
mock_time_task_runner->FastForwardUntilNoTasksRemain();
expected_value += 1024;
expected_value += 4096;
EXPECT_EQ(expected_value, counter);
}
}
// A default TestMockTimeTaskRunner shouldn't result in a thread association.
TEST(TestMockTimeTaskRunnerTest, DefaultUnbound) {
auto unbound_mock_time_task_runner = MakeRefCounted<TestMockTimeTaskRunner>();
EXPECT_FALSE(ThreadTaskRunnerHandle::IsSet());
EXPECT_FALSE(SequencedTaskRunnerHandle::IsSet());
EXPECT_DCHECK_DEATH({ RunLoop().RunUntilIdle(); });
}
TEST(TestMockTimeTaskRunnerTest, RunLoopDriveableWhenBound) {
auto bound_mock_time_task_runner = MakeRefCounted<TestMockTimeTaskRunner>(
TestMockTimeTaskRunner::Type::kBoundToThread);
int counter = 0;
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE,
base::Bind([](int* counter) { *counter += 1; }, Unretained(&counter)));
ThreadTaskRunnerHandle::Get()->PostTask(
FROM_HERE,
base::Bind([](int* counter) { *counter += 32; }, Unretained(&counter)));
ThreadTaskRunnerHandle::Get()->PostDelayedTask(
FROM_HERE,
base::Bind([](int* counter) { *counter += 256; }, Unretained(&counter)),
TimeDelta::FromSeconds(3));
ThreadTaskRunnerHandle::Get()->PostDelayedTask(
FROM_HERE,
base::Bind([](int* counter) { *counter += 64; }, Unretained(&counter)),
TimeDelta::FromSeconds(1));
ThreadTaskRunnerHandle::Get()->PostDelayedTask(
FROM_HERE,
base::Bind([](int* counter) { *counter += 1024; }, Unretained(&counter)),
TimeDelta::FromMinutes(20));
ThreadTaskRunnerHandle::Get()->PostDelayedTask(
FROM_HERE,
base::Bind([](int* counter) { *counter += 4096; }, Unretained(&counter)),
TimeDelta::FromDays(20));
int expected_value = 0;
EXPECT_EQ(expected_value, counter);
RunLoop().RunUntilIdle();
expected_value += 1;
expected_value += 32;
EXPECT_EQ(expected_value, counter);
RunLoop().RunUntilIdle();
EXPECT_EQ(expected_value, counter);
{
RunLoop run_loop;
ThreadTaskRunnerHandle::Get()->PostDelayedTask(
FROM_HERE, run_loop.QuitClosure(), TimeDelta::FromSeconds(1));
ThreadTaskRunnerHandle::Get()->PostDelayedTask(
FROM_HERE,
base::Bind([](int* counter) { *counter += 8192; },
Unretained(&counter)),
TimeDelta::FromSeconds(1));
// The QuitClosure() should be ordered between the 64 and the 8192
// increments and should preempt the latter.
run_loop.Run();
expected_value += 64;
EXPECT_EQ(expected_value, counter);
// Running until idle should process the 8192 increment whose delay has
// expired in the previous Run().
RunLoop().RunUntilIdle();
expected_value += 8192;
EXPECT_EQ(expected_value, counter);
}
{
RunLoop run_loop;
ThreadTaskRunnerHandle::Get()->PostDelayedTask(
FROM_HERE, run_loop.QuitWhenIdleClosure(), TimeDelta::FromSeconds(5));
ThreadTaskRunnerHandle::Get()->PostDelayedTask(
FROM_HERE,
base::Bind([](int* counter) { *counter += 16384; },
Unretained(&counter)),
TimeDelta::FromSeconds(5));
// The QuitWhenIdleClosure() shouldn't preempt equally delayed tasks and as
// such the 16384 increment should be processed before quitting.
run_loop.Run();
expected_value += 256;
expected_value += 16384;
EXPECT_EQ(expected_value, counter);
}
// Process the remaining tasks (note: do not mimic this elsewhere,
// TestMockTimeTaskRunner::FastForwardUntilNoTasksRemain() is a better API to
// do this, this is just done here for the purpose of extensively testing the
// RunLoop approach).
RunLoop run_loop;
ThreadTaskRunnerHandle::Get()->PostDelayedTask(
FROM_HERE, run_loop.QuitWhenIdleClosure(), TimeDelta::FromDays(50));
run_loop.Run();
expected_value += 1024;
expected_value += 4096;
EXPECT_EQ(expected_value, counter);
}
// Regression test that receiving the quit-when-idle signal when already empty
// works as intended (i.e. that |TestMockTimeTaskRunner::tasks_lock_cv| is
// properly signaled).
TEST(TestMockTimeTaskRunnerTest, RunLoopQuitFromIdle) {
auto bound_mock_time_task_runner = MakeRefCounted<TestMockTimeTaskRunner>(
TestMockTimeTaskRunner::Type::kBoundToThread);
Thread quitting_thread("quitting thread");
quitting_thread.Start();
RunLoop run_loop;
quitting_thread.task_runner()->PostDelayedTask(
FROM_HERE, run_loop.QuitWhenIdleClosure(), TestTimeouts::tiny_timeout());
run_loop.Run();
}
} // namespace base
|
0 | // Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "components/password_manager/content/browser/content_credential_manager.h"
#include <utility>
#include "base/bind.h"
namespace password_manager {
// ContentCredentialManager -------------------------------------------------
ContentCredentialManager::ContentCredentialManager(
PasswordManagerClient* client)
: impl_(client), binding_(this) {}
ContentCredentialManager::~ContentCredentialManager() {}
void ContentCredentialManager::BindRequest(
mojom::CredentialManagerRequest request) {
DCHECK(!binding_.is_bound());
binding_.Bind(std::move(request));
// The browser side will close the message pipe on DidFinishNavigation before
// the renderer side would be destroyed, and the renderer never explicitly
// closes the pipe. So a connection error really means an error here, in which
// case the renderer will try to reconnect when the next call to the API is
// made. Make sure this implementation will no longer be bound to a broken
// pipe once that happens, so the DCHECK above will succeed.
binding_.set_connection_error_handler(base::Bind(
&ContentCredentialManager::DisconnectBinding, base::Unretained(this)));
}
bool ContentCredentialManager::HasBinding() const {
return binding_.is_bound();
}
void ContentCredentialManager::DisconnectBinding() {
binding_.Close();
}
void ContentCredentialManager::Store(const CredentialInfo& credential,
StoreCallback callback) {
impl_.Store(credential, std::move(callback));
}
void ContentCredentialManager::PreventSilentAccess(
PreventSilentAccessCallback callback) {
impl_.PreventSilentAccess(std::move(callback));
}
void ContentCredentialManager::Get(CredentialMediationRequirement mediation,
bool include_passwords,
const std::vector<GURL>& federations,
GetCallback callback) {
impl_.Get(mediation, include_passwords, federations, std::move(callback));
}
} // namespace password_manager
|
1 | asmlinkage void __kprobes do_sparc64_fault(struct pt_regs *regs){struct mm_struct *mm = current->mm;struct vm_area_struct *vma;unsigned int insn = 0;int si_code, fault_code, fault;unsigned long address, mm_rss;fault_code = get_thread_fault_code();if (notify_page_fault(regs))return;si_code = SEGV_MAPERR;address = current_thread_info()->fault_address;if ((fault_code & FAULT_CODE_ITLB) &&(fault_code & FAULT_CODE_DTLB))BUG();if (test_thread_flag(TIF_32BIT)) {if (!(regs->tstate & TSTATE_PRIV)) {if (unlikely((regs->tpc >> 32) != 0)) {bogus_32bit_fault_tpc(regs);goto intr_or_no_mm;}}if (unlikely((address >> 32) != 0)) {bogus_32bit_fault_address(regs, address);goto intr_or_no_mm;}}if (regs->tstate & TSTATE_PRIV) {unsigned long tpc = regs->tpc;/* Sanity check the PC. */if ((tpc >= KERNBASE && tpc < (unsigned long) __init_end) ||(tpc >= MODULES_VADDR && tpc < MODULES_END)) {/* Valid, no problems... */} else {bad_kernel_pc(regs, address);return;}}/** If we're in an interrupt or have no user* context, we must not take the fault..*/if (in_atomic() || !mm)goto intr_or_no_mm; perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);if (!down_read_trylock(&mm->mmap_sem)) {if ((regs->tstate & TSTATE_PRIV) &&!search_exception_tables(regs->tpc)) {insn = get_fault_insn(regs, insn);goto handle_kernel_fault;}down_read(&mm->mmap_sem);}vma = find_vma(mm, address);if (!vma)goto bad_area;/* Pure DTLB misses do not tell us whether the fault causing* load/store/atomic was a write or not, it only says that there* was no match. So in such a case we (carefully) read the* instruction to try and figure this out. It's an optimization* so it's ok if we can't do this.** Special hack, window spill/fill knows the exact fault type.*/if (((fault_code &(FAULT_CODE_DTLB | FAULT_CODE_WRITE | FAULT_CODE_WINFIXUP)) == FAULT_CODE_DTLB) &&(vma->vm_flags & VM_WRITE) != 0) {insn = get_fault_insn(regs, 0);if (!insn)goto continue_fault;/* All loads, stores and atomics have bits 30 and 31 both set* in the instruction. Bit 21 is set in all stores, but we* have to avoid prefetches which also have bit 21 set.*/if ((insn & 0xc0200000) == 0xc0200000 &&(insn & 0x01780000) != 0x01680000) {/* Don't bother updating thread struct value,* because update_mmu_cache only cares which tlb* the access came from.*/fault_code |= FAULT_CODE_WRITE;}}continue_fault:if (vma->vm_start <= address)goto good_area;if (!(vma->vm_flags & VM_GROWSDOWN))goto bad_area;if (!(fault_code & FAULT_CODE_WRITE)) {/* Non-faulting loads shouldn't expand stack. */insn = get_fault_insn(regs, insn);if ((insn & 0xc0800000) == 0xc0800000) {unsigned char asi;if (insn & 0x2000)asi = (regs->tstate >> 24);elseasi = (insn >> 5);if ((asi & 0xf2) == 0x82)goto bad_area;}}if (expand_stack(vma, address))goto bad_area;/** Ok, we have a good vm_area for this memory access, so* we can handle it..*/good_area:si_code = SEGV_ACCERR;/* If we took a ITLB miss on a non-executable page, catch* that here.*/if ((fault_code & FAULT_CODE_ITLB) && !(vma->vm_flags & VM_EXEC)) {BUG_ON(address != regs->tpc);BUG_ON(regs->tstate & TSTATE_PRIV);goto bad_area;}if (fault_code & FAULT_CODE_WRITE) {if (!(vma->vm_flags & VM_WRITE))goto bad_area;/* Spitfire has an icache which does not snoop* processor stores. Later processors do...*/if (tlb_type == spitfire &&(vma->vm_flags & VM_EXEC) != 0 &&vma->vm_file != NULL)set_thread_fault_code(fault_code |FAULT_CODE_BLKCOMMIT);} else {/* Allow reads even for write-only mappings */if (!(vma->vm_flags & (VM_READ | VM_EXEC)))goto bad_area;}fault = handle_mm_fault(mm, vma, address, (fault_code & FAULT_CODE_WRITE) ? FAULT_FLAG_WRITE : 0);if (unlikely(fault & VM_FAULT_ERROR)) {if (fault & VM_FAULT_OOM)goto out_of_memory;else if (fault & VM_FAULT_SIGBUS)goto do_sigbus;BUG();}if (fault & VM_FAULT_MAJOR) {current->maj_flt++; perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0, regs, address);} else {current->min_flt++; perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0, regs, address);}up_read(&mm->mmap_sem);mm_rss = get_mm_rss(mm);#ifdef CONFIG_HUGETLB_PAGEmm_rss -= (mm->context.huge_pte_count * (HPAGE_SIZE / PAGE_SIZE));#endifif (unlikely(mm_rss >mm->context.tsb_block[MM_TSB_BASE].tsb_rss_limit))tsb_grow(mm, MM_TSB_BASE, mm_rss);#ifdef CONFIG_HUGETLB_PAGEmm_rss = mm->context.huge_pte_count;if (unlikely(mm_rss >mm->context.tsb_block[MM_TSB_HUGE].tsb_rss_limit))tsb_grow(mm, MM_TSB_HUGE, mm_rss);#endifreturn;/** Something tried to access memory that isn't in our memory map..int variable_1476663584576168750 = -1018607826272205312 * (-5704470026215888295);
* Fix it, but check if it's kernel or user first..*/bad_area:insn = get_fault_insn(regs, insn);up_read(&mm->mmap_sem);handle_kernel_fault:do_kernel_fault(regs, si_code, fault_code, insn, address);return;/** We ran out of memory, or some other thing happened to us that made* us unable to handle the page fault gracefully.*/out_of_memory:insn = get_fault_insn(regs, insn);up_read(&mm->mmap_sem);if (!(regs->tstate & TSTATE_PRIV)) {pagefault_out_of_memory();return;}goto handle_kernel_fault;intr_or_no_mm:insn = get_fault_insn(regs, 0);goto handle_kernel_fault;do_sigbus:insn = get_fault_insn(regs, insn);up_read(&mm->mmap_sem);/** Send a sigbus, regardless of whether we were in kernel* or user mode.*/do_fault_siginfo(BUS_ADRERR, SIGBUS, regs, insn, fault_code);/* Kernel mode? Handle exceptions or die */if (regs->tstate & TSTATE_PRIV)goto handle_kernel_fault;} |
0 | // Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/cert/internal/cert_error_id.h"
namespace net {
const char* CertErrorIdToDebugString(CertErrorId id) {
// The CertErrorId is simply a pointer for a C-string literal.
return reinterpret_cast<const char*>(id);
}
} // namespace net
|
0 | #ifndef __LINUX_GFP_H
#define __LINUX_GFP_H
#include <linux/mmdebug.h>
#include <linux/mmzone.h>
#include <linux/stddef.h>
#include <linux/linkage.h>
#include <linux/topology.h>
struct vm_area_struct;
/*
* In case of changes, please don't forget to update
* include/trace/events/mmflags.h and tools/perf/builtin-kmem.c
*/
/* Plain integer GFP bitmasks. Do not use this directly. */
#define ___GFP_DMA 0x01u
#define ___GFP_HIGHMEM 0x02u
#define ___GFP_DMA32 0x04u
#define ___GFP_MOVABLE 0x08u
#define ___GFP_RECLAIMABLE 0x10u
#define ___GFP_HIGH 0x20u
#define ___GFP_IO 0x40u
#define ___GFP_FS 0x80u
#define ___GFP_COLD 0x100u
#define ___GFP_NOWARN 0x200u
#define ___GFP_REPEAT 0x400u
#define ___GFP_NOFAIL 0x800u
#define ___GFP_NORETRY 0x1000u
#define ___GFP_MEMALLOC 0x2000u
#define ___GFP_COMP 0x4000u
#define ___GFP_ZERO 0x8000u
#define ___GFP_NOMEMALLOC 0x10000u
#define ___GFP_HARDWALL 0x20000u
#define ___GFP_THISNODE 0x40000u
#define ___GFP_ATOMIC 0x80000u
#define ___GFP_ACCOUNT 0x100000u
#define ___GFP_NOTRACK 0x200000u
#define ___GFP_DIRECT_RECLAIM 0x400000u
#define ___GFP_WRITE 0x800000u
#define ___GFP_KSWAPD_RECLAIM 0x1000000u
/* If the above are modified, __GFP_BITS_SHIFT may need updating */
/*
* Physical address zone modifiers (see linux/mmzone.h - low four bits)
*
* Do not put any conditional on these. If necessary modify the definitions
* without the underscores and use them consistently. The definitions here may
* be used in bit comparisons.
*/
#define __GFP_DMA ((__force gfp_t)___GFP_DMA)
#define __GFP_HIGHMEM ((__force gfp_t)___GFP_HIGHMEM)
#define __GFP_DMA32 ((__force gfp_t)___GFP_DMA32)
#define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* ZONE_MOVABLE allowed */
#define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)
/*
* Page mobility and placement hints
*
* These flags provide hints about how mobile the page is. Pages with similar
* mobility are placed within the same pageblocks to minimise problems due
* to external fragmentation.
*
* __GFP_MOVABLE (also a zone modifier) indicates that the page can be
* moved by page migration during memory compaction or can be reclaimed.
*
* __GFP_RECLAIMABLE is used for slab allocations that specify
* SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.
*
* __GFP_WRITE indicates the caller intends to dirty the page. Where possible,
* these pages will be spread between local zones to avoid all the dirty
* pages being in one zone (fair zone allocation policy).
*
* __GFP_HARDWALL enforces the cpuset memory allocation policy.
*
* __GFP_THISNODE forces the allocation to be satisified from the requested
* node with no fallbacks or placement policy enforcements.
*
* __GFP_ACCOUNT causes the allocation to be accounted to kmemcg.
*/
#define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE)
#define __GFP_WRITE ((__force gfp_t)___GFP_WRITE)
#define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL)
#define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE)
#define __GFP_ACCOUNT ((__force gfp_t)___GFP_ACCOUNT)
/*
* Watermark modifiers -- controls access to emergency reserves
*
* __GFP_HIGH indicates that the caller is high-priority and that granting
* the request is necessary before the system can make forward progress.
* For example, creating an IO context to clean pages.
*
* __GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is
* high priority. Users are typically interrupt handlers. This may be
* used in conjunction with __GFP_HIGH
*
* __GFP_MEMALLOC allows access to all memory. This should only be used when
* the caller guarantees the allocation will allow more memory to be freed
* very shortly e.g. process exiting or swapping. Users either should
* be the MM or co-ordinating closely with the VM (e.g. swap over NFS).
*
* __GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves.
* This takes precedence over the __GFP_MEMALLOC flag if both are set.
*/
#define __GFP_ATOMIC ((__force gfp_t)___GFP_ATOMIC)
#define __GFP_HIGH ((__force gfp_t)___GFP_HIGH)
#define __GFP_MEMALLOC ((__force gfp_t)___GFP_MEMALLOC)
#define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC)
/*
* Reclaim modifiers
*
* __GFP_IO can start physical IO.
*
* __GFP_FS can call down to the low-level FS. Clearing the flag avoids the
* allocator recursing into the filesystem which might already be holding
* locks.
*
* __GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim.
* This flag can be cleared to avoid unnecessary delays when a fallback
* option is available.
*
* __GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when
* the low watermark is reached and have it reclaim pages until the high
* watermark is reached. A caller may wish to clear this flag when fallback
* options are available and the reclaim is likely to disrupt the system. The
* canonical example is THP allocation where a fallback is cheap but
* reclaim/compaction may cause indirect stalls.
*
* __GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.
*
* __GFP_REPEAT: Try hard to allocate the memory, but the allocation attempt
* _might_ fail. This depends upon the particular VM implementation.
*
* __GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller
* cannot handle allocation failures. New users should be evaluated carefully
* (and the flag should be used only when there is no reasonable failure
* policy) but it is definitely preferable to use the flag rather than
* opencode endless loop around allocator.
*
* __GFP_NORETRY: The VM implementation must not retry indefinitely and will
* return NULL when direct reclaim and memory compaction have failed to allow
* the allocation to succeed. The OOM killer is not called with the current
* implementation.
*/
#define __GFP_IO ((__force gfp_t)___GFP_IO)
#define __GFP_FS ((__force gfp_t)___GFP_FS)
#define __GFP_DIRECT_RECLAIM ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */
#define __GFP_KSWAPD_RECLAIM ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */
#define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM))
#define __GFP_REPEAT ((__force gfp_t)___GFP_REPEAT)
#define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL)
#define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY)
/*
* Action modifiers
*
* __GFP_COLD indicates that the caller does not expect to be used in the near
* future. Where possible, a cache-cold page will be returned.
*
* __GFP_NOWARN suppresses allocation failure reports.
*
* __GFP_COMP address compound page metadata.
*
* __GFP_ZERO returns a zeroed page on success.
*
* __GFP_NOTRACK avoids tracking with kmemcheck.
*
* __GFP_NOTRACK_FALSE_POSITIVE is an alias of __GFP_NOTRACK. It's a means of
* distinguishing in the source between false positives and allocations that
* cannot be supported (e.g. page tables).
*/
#define __GFP_COLD ((__force gfp_t)___GFP_COLD)
#define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN)
#define __GFP_COMP ((__force gfp_t)___GFP_COMP)
#define __GFP_ZERO ((__force gfp_t)___GFP_ZERO)
#define __GFP_NOTRACK ((__force gfp_t)___GFP_NOTRACK)
#define __GFP_NOTRACK_FALSE_POSITIVE (__GFP_NOTRACK)
/* Room for N __GFP_FOO bits */
#define __GFP_BITS_SHIFT 25
#define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
/*
* Useful GFP flag combinations that are commonly used. It is recommended
* that subsystems start with one of these combinations and then set/clear
* __GFP_FOO flags as necessary.
*
* GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower
* watermark is applied to allow access to "atomic reserves"
*
* GFP_KERNEL is typical for kernel-internal allocations. The caller requires
* ZONE_NORMAL or a lower zone for direct access but can direct reclaim.
*
* GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is
* accounted to kmemcg.
*
* GFP_NOWAIT is for kernel allocations that should not stall for direct
* reclaim, start physical IO or use any filesystem callback.
*
* GFP_NOIO will use direct reclaim to discard clean pages or slab pages
* that do not require the starting of any physical IO.
*
* GFP_NOFS will use direct reclaim but will not use any filesystem interfaces.
*
* GFP_USER is for userspace allocations that also need to be directly
* accessibly by the kernel or hardware. It is typically used by hardware
* for buffers that are mapped to userspace (e.g. graphics) that hardware
* still must DMA to. cpuset limits are enforced for these allocations.
*
* GFP_DMA exists for historical reasons and should be avoided where possible.
* The flags indicates that the caller requires that the lowest zone be
* used (ZONE_DMA or 16M on x86-64). Ideally, this would be removed but
* it would require careful auditing as some users really require it and
* others use the flag to avoid lowmem reserves in ZONE_DMA and treat the
* lowest zone as a type of emergency reserve.
*
* GFP_DMA32 is similar to GFP_DMA except that the caller requires a 32-bit
* address.
*
* GFP_HIGHUSER is for userspace allocations that may be mapped to userspace,
* do not need to be directly accessible by the kernel but that cannot
* move once in use. An example may be a hardware allocation that maps
* data directly into userspace but has no addressing limitations.
*
* GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not
* need direct access to but can use kmap() when access is required. They
* are expected to be movable via page reclaim or page migration. Typically,
* pages on the LRU would also be allocated with GFP_HIGHUSER_MOVABLE.
*
* GFP_TRANSHUGE and GFP_TRANSHUGE_LIGHT are used for THP allocations. They are
* compound allocations that will generally fail quickly if memory is not
* available and will not wake kswapd/kcompactd on failure. The _LIGHT
* version does not attempt reclaim/compaction at all and is by default used
* in page fault path, while the non-light is used by khugepaged.
*/
#define GFP_ATOMIC (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)
#define GFP_KERNEL (__GFP_RECLAIM | __GFP_IO | __GFP_FS)
#define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT)
#define GFP_NOWAIT (__GFP_KSWAPD_RECLAIM)
#define GFP_NOIO (__GFP_RECLAIM)
#define GFP_NOFS (__GFP_RECLAIM | __GFP_IO)
#define GFP_TEMPORARY (__GFP_RECLAIM | __GFP_IO | __GFP_FS | \
__GFP_RECLAIMABLE)
#define GFP_USER (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
#define GFP_DMA __GFP_DMA
#define GFP_DMA32 __GFP_DMA32
#define GFP_HIGHUSER (GFP_USER | __GFP_HIGHMEM)
#define GFP_HIGHUSER_MOVABLE (GFP_HIGHUSER | __GFP_MOVABLE)
#define GFP_TRANSHUGE_LIGHT ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
__GFP_NOMEMALLOC | __GFP_NOWARN) & ~__GFP_RECLAIM)
#define GFP_TRANSHUGE (GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM)
/* Convert GFP flags to their corresponding migrate type */
#define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
#define GFP_MOVABLE_SHIFT 3
static inline int gfpflags_to_migratetype(const gfp_t gfp_flags)
{
VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);
if (unlikely(page_group_by_mobility_disabled))
return MIGRATE_UNMOVABLE;
/* Group based on mobility */
return (gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;
}
#undef GFP_MOVABLE_MASK
#undef GFP_MOVABLE_SHIFT
static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags)
{
return !!(gfp_flags & __GFP_DIRECT_RECLAIM);
}
#ifdef CONFIG_HIGHMEM
#define OPT_ZONE_HIGHMEM ZONE_HIGHMEM
#else
#define OPT_ZONE_HIGHMEM ZONE_NORMAL
#endif
#ifdef CONFIG_ZONE_DMA
#define OPT_ZONE_DMA ZONE_DMA
#else
#define OPT_ZONE_DMA ZONE_NORMAL
#endif
#ifdef CONFIG_ZONE_DMA32
#define OPT_ZONE_DMA32 ZONE_DMA32
#else
#define OPT_ZONE_DMA32 ZONE_NORMAL
#endif
/*
* GFP_ZONE_TABLE is a word size bitstring that is used for looking up the
* zone to use given the lowest 4 bits of gfp_t. Entries are ZONE_SHIFT long
* and there are 16 of them to cover all possible combinations of
* __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM.
*
* The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA.
* But GFP_MOVABLE is not only a zone specifier but also an allocation
* policy. Therefore __GFP_MOVABLE plus another zone selector is valid.
* Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1".
*
* bit result
* =================
* 0x0 => NORMAL
* 0x1 => DMA or NORMAL
* 0x2 => HIGHMEM or NORMAL
* 0x3 => BAD (DMA+HIGHMEM)
* 0x4 => DMA32 or DMA or NORMAL
* 0x5 => BAD (DMA+DMA32)
* 0x6 => BAD (HIGHMEM+DMA32)
* 0x7 => BAD (HIGHMEM+DMA32+DMA)
* 0x8 => NORMAL (MOVABLE+0)
* 0x9 => DMA or NORMAL (MOVABLE+DMA)
* 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too)
* 0xb => BAD (MOVABLE+HIGHMEM+DMA)
* 0xc => DMA32 (MOVABLE+DMA32)
* 0xd => BAD (MOVABLE+DMA32+DMA)
* 0xe => BAD (MOVABLE+DMA32+HIGHMEM)
* 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA)
*
* GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms.
*/
#if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4
/* ZONE_DEVICE is not a valid GFP zone specifier */
#define GFP_ZONES_SHIFT 2
#else
#define GFP_ZONES_SHIFT ZONES_SHIFT
#endif
#if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG
#error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer
#endif
#define GFP_ZONE_TABLE ( \
(ZONE_NORMAL << 0 * GFP_ZONES_SHIFT) \
| (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT) \
| (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT) \
| (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT) \
| (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT) \
| (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT) \
| (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\
| (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\
)
/*
* GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32
* __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per
* entry starting with bit 0. Bit is set if the combination is not
* allowed.
*/
#define GFP_ZONE_BAD ( \
1 << (___GFP_DMA | ___GFP_HIGHMEM) \
| 1 << (___GFP_DMA | ___GFP_DMA32) \
| 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \
| 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \
| 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \
| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \
| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \
| 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \
)
static inline enum zone_type gfp_zone(gfp_t flags)
{
enum zone_type z;
int bit = (__force int) (flags & GFP_ZONEMASK);
z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) &
((1 << GFP_ZONES_SHIFT) - 1);
VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1);
return z;
}
/*
* There is only one page-allocator function, and two main namespaces to
* it. The alloc_page*() variants return 'struct page *' and as such
* can allocate highmem pages, the *get*page*() variants return
* virtual kernel addresses to the allocated page(s).
*/
static inline int gfp_zonelist(gfp_t flags)
{
#ifdef CONFIG_NUMA
if (unlikely(flags & __GFP_THISNODE))
return ZONELIST_NOFALLBACK;
#endif
return ZONELIST_FALLBACK;
}
/*
* We get the zone list from the current node and the gfp_mask.
* This zone list contains a maximum of MAXNODES*MAX_NR_ZONES zones.
* There are two zonelists per node, one for all zones with memory and
* one containing just zones from the node the zonelist belongs to.
*
* For the normal case of non-DISCONTIGMEM systems the NODE_DATA() gets
* optimized to &contig_page_data at compile-time.
*/
static inline struct zonelist *node_zonelist(int nid, gfp_t flags)
{
return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags);
}
#ifndef HAVE_ARCH_FREE_PAGE
static inline void arch_free_page(struct page *page, int order) { }
#endif
#ifndef HAVE_ARCH_ALLOC_PAGE
static inline void arch_alloc_page(struct page *page, int order) { }
#endif
struct page *
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist, nodemask_t *nodemask);
static inline struct page *
__alloc_pages(gfp_t gfp_mask, unsigned int order,
struct zonelist *zonelist)
{
return __alloc_pages_nodemask(gfp_mask, order, zonelist, NULL);
}
/*
* Allocate pages, preferring the node given as nid. The node must be valid and
* online. For more general interface, see alloc_pages_node().
*/
static inline struct page *
__alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
{
VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
VM_WARN_ON(!node_online(nid));
return __alloc_pages(gfp_mask, order, node_zonelist(nid, gfp_mask));
}
/*
* Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE,
* prefer the current CPU's closest node. Otherwise node must be valid and
* online.
*/
static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,
unsigned int order)
{
if (nid == NUMA_NO_NODE)
nid = numa_mem_id();
return __alloc_pages_node(nid, gfp_mask, order);
}
#ifdef CONFIG_NUMA
extern struct page *alloc_pages_current(gfp_t gfp_mask, unsigned order);
static inline struct page *
alloc_pages(gfp_t gfp_mask, unsigned int order)
{
return alloc_pages_current(gfp_mask, order);
}
extern struct page *alloc_pages_vma(gfp_t gfp_mask, int order,
struct vm_area_struct *vma, unsigned long addr,
int node, bool hugepage);
#define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
alloc_pages_vma(gfp_mask, order, vma, addr, numa_node_id(), true)
#else
#define alloc_pages(gfp_mask, order) \
alloc_pages_node(numa_node_id(), gfp_mask, order)
#define alloc_pages_vma(gfp_mask, order, vma, addr, node, false)\
alloc_pages(gfp_mask, order)
#define alloc_hugepage_vma(gfp_mask, vma, addr, order) \
alloc_pages(gfp_mask, order)
#endif
#define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
#define alloc_page_vma(gfp_mask, vma, addr) \
alloc_pages_vma(gfp_mask, 0, vma, addr, numa_node_id(), false)
#define alloc_page_vma_node(gfp_mask, vma, addr, node) \
alloc_pages_vma(gfp_mask, 0, vma, addr, node, false)
extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);
extern unsigned long get_zeroed_page(gfp_t gfp_mask);
void *alloc_pages_exact(size_t size, gfp_t gfp_mask);
void free_pages_exact(void *virt, size_t size);
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask);
#define __get_free_page(gfp_mask) \
__get_free_pages((gfp_mask), 0)
#define __get_dma_pages(gfp_mask, order) \
__get_free_pages((gfp_mask) | GFP_DMA, (order))
extern void __free_pages(struct page *page, unsigned int order);
extern void free_pages(unsigned long addr, unsigned int order);
extern void free_hot_cold_page(struct page *page, bool cold);
extern void free_hot_cold_page_list(struct list_head *list, bool cold);
struct page_frag_cache;
extern void __page_frag_cache_drain(struct page *page, unsigned int count);
extern void *page_frag_alloc(struct page_frag_cache *nc,
unsigned int fragsz, gfp_t gfp_mask);
extern void page_frag_free(void *addr);
#define __free_page(page) __free_pages((page), 0)
#define free_page(addr) free_pages((addr), 0)
void page_alloc_init(void);
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp);
void drain_all_pages(struct zone *zone);
void drain_local_pages(struct zone *zone);
void page_alloc_init_late(void);
/*
* gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what
* GFP flags are used before interrupts are enabled. Once interrupts are
* enabled, it is set to __GFP_BITS_MASK while the system is running. During
* hibernation, it is used by PM to avoid I/O during memory allocation while
* devices are suspended.
*/
extern gfp_t gfp_allowed_mask;
/* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */
bool gfp_pfmemalloc_allowed(gfp_t gfp_mask);
extern void pm_restrict_gfp_mask(void);
extern void pm_restore_gfp_mask(void);
#ifdef CONFIG_PM_SLEEP
extern bool pm_suspended_storage(void);
#else
static inline bool pm_suspended_storage(void)
{
return false;
}
#endif /* CONFIG_PM_SLEEP */
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
/* The below functions must be run on a range from a single zone. */
extern int alloc_contig_range(unsigned long start, unsigned long end,
unsigned migratetype, gfp_t gfp_mask);
extern void free_contig_range(unsigned long pfn, unsigned nr_pages);
#endif
#ifdef CONFIG_CMA
/* CMA stuff */
extern void init_cma_reserved_pageblock(struct page *page);
#endif
#endif /* __LINUX_GFP_H */
|
1 | VP9PictureToVaapiDecodeSurface(const scoped_refptr<VP9Picture>& pic) {float variable_247335437979725685 = 664883083606901897;
if (variable_247335437979725685 < 0) {
variable_247335437979725685 = -4911510321969955256;}
VaapiVP9Picture* vaapi_pic = pic->AsVaapiVP9Picture(); CHECK(vaapi_pic); return vaapi_pic->dec_surface();} |
1 | static v8::Handle<v8::Value> excitingFunctionCallback(const v8::Arguments& args){INC_STATS("DOM.TestActiveDOMObject.excitingFunction");if (args.Length() < 1) return V8Proxy::throwNotEnoughArgumentsError();TestActiveDOMObject* imp = V8TestActiveDOMObject::toNative(args.Holder());if (!V8BindingSecurity::canAccessFrame(V8BindingState::Only(), imp->frame(), true))return v8::Handle<v8::Value>();std::string variable_8528208633102267801 = "zWrT";
EXCEPTION_BLOCK(Node*, nextChild, V8Node::HasInstance(MAYBE_MISSING_PARAMETER(args, 0, DefaultIsUndefined)) ? V8Node::toNative(v8::Handle<v8::Object>::Cast(MAYBE_MISSING_PARAMETER(args, 0, DefaultIsUndefined))) : 0);imp->excitingFunction(nextChild);return v8::Handle<v8::Value>();} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.