import os import datasets import pandas as pd _CITATION = """\ @article{maharajan2020attack, title={Attack classification and intrusion detection in IoT network using machine learning techniques}, author={Maharajan, R and Raja, KS}, journal={Computers \& Electrical Engineering}, volume={87}, pages={106783}, year={2020}, publisher={Elsevier} }""" _DESCRIPTION = """\ The CIC-IDS2017 dataset is an intrusion detection dataset that consists of network traffic data. \ It contains different network attacks and normal traffic. This dataset can be used for evaluating \ intrusion detection systems in IoT networks. """ _HOMEPAGE = "https://www.unb.ca/cic/datasets/ids-2017.html" _LICENSE = "Unknown" _FOLDERS = { "folder_1": "Network-Flows", "folder_2": "Payload-Bytes", "folder_3": "Packet-Bytes", "folder_4": "Packet-Fields", } class CICIDS2017(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="folder_1", version=VERSION, description="Folder 1 of CIC-IDS2017 dataset"), datasets.BuilderConfig(name="folder_2", version=VERSION, description="Folder 2 of CIC-IDS2017 dataset"), datasets.BuilderConfig(name="folder_3", version=VERSION, description="Folder 3 of CIC-IDS2017 dataset"), datasets.BuilderConfig(name="folder_4", version=VERSION, description="Folder 4 of CIC-IDS2017 dataset"), ] DEFAULT_CONFIG_NAME = "folder_1" def _info(self): if self.config.name == "folder_1": features = datasets.Features( { "source_ip": datasets.Value("string"), "destination_ip": datasets.Value("string"), "timestamp": datasets.Value("string"), "protocol": datasets.Value("string"), "flow_duration": datasets.Value("float"), # Add more features specific to folder_1 configuration } ) elif self.config.name == "folder_2": features = datasets.Features( { "source_ip": datasets.Value("string"), "destination_ip": datasets.Value("string"), "timestamp": datasets.Value("string"), "protocol": datasets.Value("string"), "flow_duration": datasets.Value("float"), # Add more features specific to folder_2 configuration } ) elif self.config.name == "folder_3": features = datasets.Features( { "source_ip": datasets.Value("string"), "destination_ip": datasets.Value("string"), "timestamp": datasets.Value("string"), "protocol": datasets.Value("string"), "flow_duration": datasets.Value("float"), # Add more features specific to folder_3 configuration } ) else: # folder_4 features = datasets.Features( { "source_ip": datasets.Value("string"), "destination_ip": datasets.Value("string"), "timestamp": datasets.Value("string"), "protocol": datasets.Value("string"), "flow_duration": datasets.Value("float"), # Add more features specific to folder_4 configuration } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): folder_path = _FOLDERS[self.config.name] data_dir = dl_manager.download(folder_path) csv_files = [ filename for filename in os.listdir(data_dir) if filename.endswith(".csv") ] return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"data_dir": data_dir, "csv_files": csv_files}, ) ] def _generate_examples(self, data_dir, csv_files): for csv_file in csv_files: file_path = os.path.join(data_dir, csv_file) df = pd.read_csv(file_path) for idx, row in df.iterrows(): example = { "source_ip": row["source_ip"], "destination_ip": row["destination_ip"], "timestamp": row["timestamp"], "protocol": row["protocol"], "flow_duration": row["flow_duration"], # Add more feature values according to the dataset columns } yield idx, example datasets.load_dataset("rdpahalavan/CIC-IDS2017")