File size: 5,964 Bytes
26ce9e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44d7d24
 
 
26ce9e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe7e25b
26ce9e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1a9eb1
26ce9e4
 
 
 
 
 
 
b1a9eb1
26ce9e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import csv
import os
from typing import Dict, List

import datasets

from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import (DEFAULT_SEACROWD_VIEW_NAME,
                                       DEFAULT_SOURCE_VIEW_NAME, Tasks)

_DATASETNAME = "su_id_asr"
_SOURCE_VIEW_NAME = DEFAULT_SOURCE_VIEW_NAME
_UNIFIED_VIEW_NAME = DEFAULT_SEACROWD_VIEW_NAME

_LANGUAGES = ["sun"]
_LOCAL = False
_CITATION = """\
@inproceedings{sodimana18_sltu,
  author={Keshan Sodimana and Pasindu {De Silva} and Supheakmungkol Sarin and Oddur Kjartansson and Martin Jansche and Knot Pipatsrisawat and Linne Ha},
  title={{A Step-by-Step Process for Building TTS Voices Using Open Source Data and Frameworks for Bangla, Javanese, Khmer, Nepali, Sinhala, and Sundanese}},
  year=2018,
  booktitle={Proc. 6th Workshop on Spoken Language Technologies for Under-Resourced Languages (SLTU 2018)},
  pages={66--70},
  doi={10.21437/SLTU.2018-14}
}
"""

_DESCRIPTION = """\
Sundanese ASR training data set containing ~220K utterances.
This dataset was collected by Google in Indonesia.


"""

_HOMEPAGE = "https://indonlp.github.io/nusa-catalogue/card.html?su_id_asr"

_LICENSE = "Attribution-ShareAlike 4.0 International."

_URLs = {
    "su_id_asr_train": "https://univindonesia-my.sharepoint.com/:u:/g/personal/raditya_aditama_office_ui_ac_id/EWzwxTdkWmlDoPMF-eHWO1IBfy-FiKbM2T5RphBCVD2udQ?e=AMLjxH&download=1",
    "su_id_asr_dev": "https://univindonesia-my.sharepoint.com/:u:/g/personal/raditya_aditama_office_ui_ac_id/EQKIXZmDHUtMn6G1vNWTSy0B0PGSTd-L-4lS-KOz3r7L2Q?e=NhbO9V&download=1",
    "su_id_asr_test": "https://univindonesia-my.sharepoint.com/:u:/g/personal/raditya_aditama_office_ui_ac_id/EZlgWlbnrXhJq5Hd4hL6PwoB2Th1oOYnSxIyg7Sk1ro7OQ?e=zfSbyP&download=1",
}

_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION]

_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"


class SuIdASR(datasets.GeneratorBasedBuilder):
    """su_id contains ~220K utterances for Sundanese ASR training data."""

    BUILDER_CONFIGS = [
        SEACrowdConfig(
            name="su_id_asr_source",
            version=datasets.Version(_SOURCE_VERSION),
            description="SU_ID_ASR source schema",
            schema="source",
            subset_id="su_id_asr",
        ),
        SEACrowdConfig(
            name="su_id_asr_seacrowd_sptext",
            version=datasets.Version(_SEACROWD_VERSION),
            description="SU_ID_ASR Nusantara schema",
            schema="seacrowd_sptext",
            subset_id="su_id_asr",
        ),
    ]

    DEFAULT_CONFIG_NAME = "su_id_asr_source"

    def _info(self):
        if self.config.schema == "source":
            features = datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "speaker_id": datasets.Value("string"),
                    "path": datasets.Value("string"),
                    "audio": datasets.Audio(sampling_rate=16_000),
                    "text": datasets.Value("string"),
                }
            )
        elif self.config.schema == "seacrowd_sptext":
            features = schemas.speech_text_features

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": dl_manager.download_and_extract(_URLs["su_id_asr_train"])},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": dl_manager.download_and_extract(_URLs["su_id_asr_dev"])},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": dl_manager.download_and_extract(_URLs["su_id_asr_test"])},
            )
        ]

    def _generate_examples(self, filepath: str):

        if self.config.schema == "source" or self.config.schema == "seacrowd_sptext":

            tsv_file = os.path.join(filepath, "asr_sundanese", "asr_sundanese", "utt_spk_text.tsv")

            with open(tsv_file, "r") as file:
                tsv_file = csv.reader(file, delimiter="\t")

                for line in tsv_file:
                    audio_id, speaker_id, transcription_text = line[0], line[1], line[2]

                    wav_path = os.path.join(filepath, "asr_sundanese", "asr_sundanese", "data", "{}".format(audio_id[:2]), "{}.flac".format(audio_id))

                    if os.path.exists(wav_path):
                        if self.config.schema == "source":
                            ex = {
                                "id": audio_id,
                                "speaker_id": speaker_id,
                                "path": wav_path,
                                "audio": wav_path,
                                "text": transcription_text,
                            }
                            yield audio_id, ex
                        elif self.config.schema == "seacrowd_sptext":
                            ex = {
                                "id": audio_id,
                                "speaker_id": speaker_id,
                                "path": wav_path,
                                "audio": wav_path,
                                "text": transcription_text,
                                "metadata": {
                                    "speaker_age": None,
                                    "speaker_gender": None,
                                },
                            }
                            yield audio_id, ex
                        
        else:
            raise ValueError(f"Invalid config: {self.config.name}")