#!/usr/bin/python3 # -*- coding: utf-8 -*- import argparse from collections import defaultdict import json from pathlib import Path import numpy as np from scipy.io import wavfile import torch from tqdm import tqdm from typing import List from project_settings import project_path def get_args(): parser = argparse.ArgumentParser() parser.add_argument( "--call_monitor_examples_wav_dir", default=(project_path / "data/call_monitor_examples_wav/id-ID").as_posix(), type=str ) parser.add_argument( "--output_dir", default=(project_path / "data/voice_test_examples").as_posix(), type=str ) parser.add_argument("--n_samples", default=7, type=int) args = parser.parse_args() return args def save_media(output_dir: Path, language: str, category: str, call_id: str, early_media: np.ndarray, active_media: np.ndarray = None, sample_rate: int = 8000): early_media_filename = output_dir / "{}/{}/early_media_{}.wav".format(language, category, call_id) active_media_filename = output_dir / "{}/{}/active_media_{}.wav".format(language, category, call_id) early_media_filename.parent.mkdir(parents=True, exist_ok=True) wavfile.write(early_media_filename.as_posix(), sample_rate, early_media) if active_media is not None: active_media_filename.parent.mkdir(parents=True, exist_ok=True) wavfile.write(active_media_filename.as_posix(), sample_rate, active_media) def main(): args = get_args() call_monitor_examples_wav_dir = Path(args.call_monitor_examples_wav_dir) output_dir = Path(args.output_dir) counter = defaultdict(int) metadata_file = call_monitor_examples_wav_dir / "metadata.json" with open(metadata_file.as_posix(), "r", encoding="utf-8") as f: metadata = json.load(f) for meta in metadata: filename = meta["filename"] early_media_label = meta["early_media_label"] early_media_ts = meta["early_media_ts"] on_answer_label = meta["on_answer_label"] on_answer_ts = meta["on_answer_ts"] filename = call_monitor_examples_wav_dir / filename call_id = filename.stem language = filename.parts[-2] sample_rate, signal = wavfile.read(filename.as_posix()) if on_answer_ts is None: early_media = signal active_media = None else: early_media_n_samples = int(on_answer_ts / 1000 * sample_rate) early_media = signal[:early_media_n_samples] active_media = signal[early_media_n_samples:] append_length = 16000 * 15 if len(active_media) < 16000: multiple = append_length / len(active_media) active_media_ = [active_media] + [active_media[-16000:]] * int(multiple) else: active_media_ = [active_media] + [active_media[-16000:]] * 15 active_media = np.concatenate(active_media_, axis=0) category = "other" if on_answer_label in ("voicemail",): category = "01" if counter[category] > args.n_samples: continue counter[category] += 1 save_media( output_dir=output_dir, language=language, category=category, call_id=call_id, early_media=early_media, active_media=active_media, sample_rate=sample_rate, ) if on_answer_label in ("mute", "white_noise"): category = "03" if counter[category] > args.n_samples: continue counter[category] += 1 save_media( output_dir=output_dir, language=language, category=category, call_id=call_id, early_media=early_media, active_media=active_media, sample_rate=sample_rate, ) if early_media_label is not None and on_answer_label in ("voicemail",): category = "04" if counter[category] > args.n_samples: continue counter[category] += 1 save_media( output_dir=output_dir, language=language, category=category, call_id=call_id, early_media=early_media, active_media=active_media, sample_rate=sample_rate, ) if on_answer_label in ("voice",): category = "05" if counter[category] > args.n_samples: continue counter[category] += 1 save_media( output_dir=output_dir, language=language, category=category, call_id=call_id, early_media=early_media, active_media=active_media, sample_rate=sample_rate, ) if on_answer_ts > 25000: category = "06" if counter[category] > args.n_samples: continue counter[category] += 1 save_media( output_dir=output_dir, language=language, category=category, call_id=call_id, early_media=early_media, active_media=active_media, sample_rate=sample_rate, ) if category == "other": if counter[category] > args.n_samples: continue counter[category] += 1 save_media( output_dir=output_dir, language=language, category=category, call_id=call_id, early_media=early_media, active_media=active_media, sample_rate=sample_rate, ) return if __name__ == '__main__': main()