Datasets:
Languages:
English
Multilinguality:
monolingual
Size Categories:
1K<n<10K
Language Creators:
found
Annotations Creators:
crowdsourced
Source Datasets:
original
ArXiv:
License:
cc-by-4.0
"""TODO(qasc): Add a description here.""" | |
import json | |
import datasets | |
# TODO(qasc): BibTeX citation | |
_CITATION = """\ | |
@article{allenai:qasc, | |
author = {Tushar Khot and Peter Clark and Michal Guerquin and Peter Jansen and Ashish Sabharwal}, | |
title = {QASC: A Dataset for Question Answering via Sentence Composition}, | |
journal = {arXiv:1910.11473v2}, | |
year = {2020}, | |
} | |
""" | |
# TODO(qasc): | |
_DESCRIPTION = """ | |
QASC is a question-answering dataset with a focus on sentence composition. It consists of 9,980 8-way multiple-choice | |
questions about grade school science (8,134 train, 926 dev, 920 test), and comes with a corpus of 17M sentences. | |
""" | |
_URl = "http://data.allenai.org/downloads/qasc/qasc_dataset.tar.gz" | |
class Qasc(datasets.GeneratorBasedBuilder): | |
"""TODO(qasc): Short description of my dataset.""" | |
# TODO(qasc): Set up version. | |
VERSION = datasets.Version("0.1.0") | |
def _info(self): | |
# TODO(qasc): Specifies the datasets.DatasetInfo object | |
return datasets.DatasetInfo( | |
# This is the description that will appear on the datasets page. | |
description=_DESCRIPTION, | |
# datasets.features.FeatureConnectors | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"question": datasets.Value("string"), | |
"choices": datasets.features.Sequence( | |
{"text": datasets.Value("string"), "label": datasets.Value("string")} | |
), | |
"answerKey": datasets.Value("string"), | |
"fact1": datasets.Value("string"), | |
"fact2": datasets.Value("string"), | |
"combinedfact": datasets.Value("string"), | |
"formatted_question": datasets.Value("string"), | |
# These are the features of your dataset like images, labels ... | |
} | |
), | |
# If there's a common (input, target) tuple from the features, | |
# specify them here. They'll be used if as_supervised=True in | |
# builder.as_dataset. | |
supervised_keys=None, | |
# Homepage of the dataset for documentation | |
homepage="https://allenai.org/data/qasc", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
# TODO(qasc): Downloads the data and defines the splits | |
# dl_manager is a datasets.download.DownloadManager that can be used to | |
# download and extract URLs | |
archive = dl_manager.download(_URl) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": "/".join(["QASC_Dataset", "train.jsonl"]), | |
"files": dl_manager.iter_archive(archive), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": "/".join(["QASC_Dataset", "test.jsonl"]), | |
"files": dl_manager.iter_archive(archive), | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
# These kwargs will be passed to _generate_examples | |
gen_kwargs={ | |
"filepath": "/".join(["QASC_Dataset", "dev.jsonl"]), | |
"files": dl_manager.iter_archive(archive), | |
}, | |
), | |
] | |
def _generate_examples(self, filepath, files): | |
"""Yields examples.""" | |
# TODO(qasc): Yields (key, example) tuples from the dataset | |
for path, f in files: | |
if path == filepath: | |
for row in f: | |
data = json.loads(row.decode("utf-8")) | |
answerkey = data.get("answerKey", "") | |
id_ = data["id"] | |
question = data["question"]["stem"] | |
choices = data["question"]["choices"] | |
text_choices = [choice["text"] for choice in choices] | |
label_choices = [choice["label"] for choice in choices] | |
fact1 = data.get("fact1", "") | |
fact2 = data.get("fact2", "") | |
combined_fact = data.get("combinedfact", "") | |
formatted_question = data.get("formatted_question", "") | |
yield id_, { | |
"id": id_, | |
"answerKey": answerkey, | |
"question": question, | |
"choices": {"text": text_choices, "label": label_choices}, | |
"fact1": fact1, | |
"fact2": fact2, | |
"combinedfact": combined_fact, | |
"formatted_question": formatted_question, | |
} | |
break | |