Datasets:
Tasks:
Question Answering
Languages:
English
Multilinguality:
monolingual
Size Categories:
100K<n<1M
Language Creators:
found
Annotations Creators:
machine-generated
Source Datasets:
original
ArXiv:
Tags:
quizbowl
License:
unknown
File size: 10,326 Bytes
19bfe3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
"""qanta dataset."""
import json
from typing import List, Tuple
import datasets
_CITATION = """
@article{Rodriguez2019QuizbowlTC,
title={Quizbowl: The Case for Incremental Question Answering},
author={Pedro Rodriguez and Shi Feng and Mohit Iyyer and He He and Jordan L. Boyd-Graber},
journal={ArXiv},
year={2019},
volume={abs/1904.04792}
}
"""
_DESCRIPTION = """
The Qanta dataset is a question answering dataset based on the academic trivia game Quizbowl.
"""
_QANTA_URL = "https://s3-us-west-2.amazonaws.com/pinafore-us-west-2/qanta-jmlr-datasets/qanta.mapped.2018.04.18.json"
_TRICK_URL = "https://s3-us-west-2.amazonaws.com/pinafore-us-west-2/trick-tacl-datasets/qanta.tacl-trick.json"
_VERSION = datasets.Version("2018.04.18")
_FIRST = "first"
_FULL = "full"
_SENTENCES = "sentences"
_RUNS = "runs"
# Order matters, the first one is default
_MODES = [_FULL, _FIRST, _SENTENCES, _RUNS]
_DEFAULT_CHAR_SKIP = 25
class QantaConfig(datasets.BuilderConfig):
"""BuilderConfig for Qanta."""
def __init__(self, mode: str, char_skip: int, **kwargs):
super(QantaConfig, self).__init__(version=_VERSION, **kwargs)
self.mode = mode
self.char_skip = char_skip
def create_char_runs(text: str, char_skip: int) -> List[Tuple[str, int]]:
"""
Returns runs of the question based on skipping char_skip characters at a time. Also returns the indices used
q: name this first united states president.
runs with char_skip=10:
['name this ',
'name this first unit',
'name this first united state p',
'name this first united state president.']
:param char_skip: Number of characters to skip each time
"""
char_indices = list(range(char_skip, len(text) + char_skip, char_skip))
return [(text[:idx], idx) for idx in char_indices]
def with_default(key, lookup, default):
if key in lookup:
value = lookup[key]
if value is None:
return default
else:
return value
else:
return default
def question_to_examples(question, mode: str, char_skip: int):
features = {
"qanta_id": question["qanta_id"],
"proto_id": with_default("proto_id", question, ""),
"qdb_id": with_default("qdb_id", question, -1),
# We refer to the actual answer as page, but this
# may be misleading externally, so rename here to
# be clearer
"page": question["page"],
"answer": question["page"],
"raw_answer": question["answer"],
"dataset": with_default("dataset", question, ""),
"full_question": question["text"],
"first_sentence": question["first_sentence"],
"tokenizations": question["tokenizations"],
"fold": question["fold"],
"gameplay": question["gameplay"],
"category": with_default("category", question, ""),
"subcategory": with_default("subcategory", question, ""),
"tournament": question["tournament"],
"difficulty": with_default("difficulty", question, ""),
"year": question["year"],
"char_idx": -1,
"sentence_idx": -1,
}
if mode == _FULL:
yield {
"text": question["text"],
"id": str(question["qanta_id"]) + "-full",
**features,
}
elif mode == _FIRST:
yield {
"text": question["first_sentence"],
"id": str(question["qanta_id"]) + "-first",
**features,
}
elif mode == _RUNS:
text = question["text"]
for text_run, char_idx in create_char_runs(text, char_skip):
yield {
"text": text_run,
"char_idx": char_idx,
"id": str(question["qanta_id"]) + "-char-" + str(char_idx),
**features,
}
elif mode == _SENTENCES:
for sentence_idx, (start, end) in enumerate(question["tokenizations"]):
sentence = question["text"][start:end]
yield {
"text": sentence,
"sentence_idx": sentence_idx,
"id": str(question["qanta_id"]) + "-sentence-" + str(sentence_idx),
**features,
}
else:
raise ValueError(f"Invalid mode: {mode}")
_FEATURES = {
# Generated ID based modes set, unique
"id": datasets.Value("string"),
# Dataset defined IDs
"qanta_id": datasets.Value("int32"),
"proto_id": datasets.Value("string"),
"qdb_id": datasets.Value("int32"),
"dataset": datasets.Value("string"),
# Inputs
"text": datasets.Value("string"),
"full_question": datasets.Value("string"),
"first_sentence": datasets.Value("string"),
"char_idx": datasets.Value("int32"),
"sentence_idx": datasets.Value("int32"),
# Character indices of sentences: List[Tuple[int, int]]
"tokenizations": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("int32"), length=2)),
# Labels: Number is equal to number of unique pages across all folds
"answer": datasets.Value("string"),
"page": datasets.Value("string"),
"raw_answer": datasets.Value("string"),
# Meta Information
"fold": datasets.Value("string"),
"gameplay": datasets.Value("bool"),
"category": datasets.Value("string"),
"subcategory": datasets.Value("string"),
"tournament": datasets.Value("string"),
"difficulty": datasets.Value("string"),
"year": datasets.Value("int32"),
}
class Qanta(datasets.GeneratorBasedBuilder):
"""The Qanta dataset is a question answering dataset based on the academic trivia game Quizbowl."""
VERSION = _VERSION
BUILDER_CONFIGS = [
QantaConfig(
name=f"mode={mode},char_skip={_DEFAULT_CHAR_SKIP}",
description=f"Question format: {mode}, char_skip: {_DEFAULT_CHAR_SKIP}",
mode=mode,
char_skip=_DEFAULT_CHAR_SKIP,
)
for mode in _MODES
]
def _info(self):
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# datasets.features.FeatureConnectors
features=datasets.Features(_FEATURES),
# Number of classes is a function of the dataset, ClassLabel doesn't support dynamic
# definition, so have to defer conversion to classes to later, so can't define
# supervied keys
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="http://www.qanta.org/",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
qanta_path = dl_manager.download_and_extract(_QANTA_URL)
trick_path = dl_manager.download_and_extract(_TRICK_URL)
return [
datasets.SplitGenerator(
name=datasets.Split("guesstrain"),
gen_kwargs={
"qanta_filepath": qanta_path,
"trick_filepath": trick_path,
"fold": "guesstrain",
"mode": self.config.mode,
"char_skip": self.config.char_skip,
},
),
datasets.SplitGenerator(
name=datasets.Split("buzztrain"),
gen_kwargs={
"qanta_filepath": qanta_path,
"trick_filepath": trick_path,
"fold": "buzztrain",
"mode": self.config.mode,
"char_skip": self.config.char_skip,
},
),
datasets.SplitGenerator(
name=datasets.Split("guessdev"),
gen_kwargs={
"qanta_filepath": qanta_path,
"trick_filepath": trick_path,
"fold": "guessdev",
"mode": self.config.mode,
"char_skip": self.config.char_skip,
},
),
datasets.SplitGenerator(
name=datasets.Split("buzzdev"),
gen_kwargs={
"qanta_filepath": qanta_path,
"trick_filepath": trick_path,
"fold": "buzzdev",
"mode": self.config.mode,
"char_skip": self.config.char_skip,
},
),
datasets.SplitGenerator(
name=datasets.Split("guesstest"),
gen_kwargs={
"qanta_filepath": qanta_path,
"trick_filepath": trick_path,
"fold": "guesstest",
"mode": self.config.mode,
"char_skip": self.config.char_skip,
},
),
datasets.SplitGenerator(
name=datasets.Split("buzztest"),
gen_kwargs={
"qanta_filepath": qanta_path,
"trick_filepath": trick_path,
"fold": "buzztest",
"mode": self.config.mode,
"char_skip": self.config.char_skip,
},
),
datasets.SplitGenerator(
name=datasets.Split("adversarial"),
gen_kwargs={
"qanta_filepath": qanta_path,
"trick_filepath": trick_path,
"fold": "adversarial",
"mode": self.config.mode,
"char_skip": self.config.char_skip,
},
),
]
def _generate_examples(
self,
qanta_filepath: str,
trick_filepath: str,
fold: str,
mode: str,
char_skip: int,
):
"""Yields examples."""
if mode not in _MODES:
raise ValueError(f"Invalid mode: {mode}")
if fold == "adversarial":
path = trick_filepath
else:
path = qanta_filepath
with open(path, encoding="utf-8") as f:
questions = json.load(f)["questions"]
for q in questions:
if q["page"] is not None and q["fold"] == fold:
for example in question_to_examples(q, mode, char_skip):
yield example["id"], example
|