# -*- coding: utf-8 -*- """Los_Angeles_MIDI_Dataset_Search_and_Explore.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/github/asigalov61/Los-Angeles-MIDI-Dataset/blob/main/Los_Angeles_MIDI_Dataset_Search_and_Explore.ipynb # Los Angeles MIDI Dataset: Search and Explore (ver. 4.0) *** Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools *** #### Project Los Angeles #### Tegridy Code 2023 *** # (SETUP ENVIRONMENT) """ #@title Install all dependencies (run only once per session) !git clone --depth 1 https://github.com/asigalov61/Los-Angeles-MIDI-Dataset !pip install huggingface_hub !pip install matplotlib !pip install sklearn !pip install tqdm !apt install fluidsynth #Pip does not work for some reason. Only apt works !pip install midi2audio #@title Import all needed modules print('Loading core modules...') import os import copy from collections import Counter import random import pickle from tqdm import tqdm import pprint import statistics from joblib import Parallel, delayed import multiprocessing if not os.path.exists('/content/LAMD'): os.makedirs('/content/LAMD') print('Loading MIDI.py module...') os.chdir('/content/Los-Angeles-MIDI-Dataset') import MIDI print('Loading aux modules...') from sklearn.metrics import pairwise_distances, pairwise import matplotlib.pyplot as plt from midi2audio import FluidSynth from IPython.display import Audio, display from huggingface_hub import hf_hub_download from google.colab import files os.chdir('/content/') print('Done!') """# (PREP DATA)""" # Commented out IPython magic to ensure Python compatibility. #@title Unzip LAMDa data # %cd /content/Los-Angeles-MIDI-Dataset/META-DATA print('=' * 70) print('Unzipping META-DATA...Please wait...') !cat LAMDa_META_DATA.zip* > LAMDa_META_DATA.zip print('=' * 70) !unzip -j LAMDa_META_DATA.zip print('=' * 70) print('Done! Enjoy! :)') print('=' * 70) # %cd /content/ #================================================ # %cd /content/Los-Angeles-MIDI-Dataset/TOTALS print('=' * 70) print('Unzipping TOTALS...Please wait...') !unzip -j LAMDa_TOTALS.zip print('=' * 70) print('Done! Enjoy! :)') print('=' * 70) # %cd /content/ #@title Load LAMDa data print('=' * 70) print('Loading LAMDa data...Please wait...') print('=' * 70) print('Loading LAMDa META-DATA...') meta_data = pickle.load(open('/content/Los-Angeles-MIDI-Dataset/META-DATA/LAMDa_META_DATA.pickle', 'rb')) print('Done!') print('=' * 70) print('Loading LAMDa TOTALS...') totals = pickle.load(open('/content/Los-Angeles-MIDI-Dataset/TOTALS/LAMDa_TOTALS.pickle', 'rb')) print('Done!') print('=' * 70) print('Enjoy!') print('=' * 70) """# (PREP MIDI DATASET)""" #@title Download the dataset print('=' * 70) print('Downloading Los Angeles MIDI Dataset...Please wait...') print('=' * 70) hf_hub_download(repo_id='projectlosangeles/Los-Angeles-MIDI-Dataset', filename='Los-Angeles-MIDI-Dataset-Ver-4-0-CC-BY-NC-SA.zip', repo_type="dataset", local_dir='/content/LAMD', local_dir_use_symlinks=False) print('=' * 70) print('Done! Enjoy! :)') print('=' * 70) # Commented out IPython magic to ensure Python compatibility. #@title Unzip the dataset # %cd /content/LAMD print('=' * 70) print('Unzipping Los Angeles MIDI Dataset...Please wait...') !unzip 'Los-Angeles-MIDI-Dataset-Ver-4-0-CC-BY-NC-SA.zip' print('=' * 70) print('Done! Enjoy! :)') print('=' * 70) # %cd /content/ #@title Create dataset files list print('=' * 70) print('Creating dataset files list...') dataset_addr = "/content/LAMD/MIDIs" # os.chdir(dataset_addr) filez = list() for (dirpath, dirnames, filenames) in os.walk(dataset_addr): filez += [os.path.join(dirpath, file) for file in filenames] if filez == []: print('Could not find any MIDI files. Please check Dataset dir...') print('=' * 70) print('=' * 70) print('Randomizing file list...') random.shuffle(filez) print('=' * 70) LAMD_files_list = [] for f in tqdm(filez): LAMD_files_list.append([f.split('/')[-1].split('.mid')[0], f]) print('Done!') print('=' * 70) """# (PLOT TOTALS)""" #@title Plot totals from MIDI matrixes (legacy) cos_sim = pairwise.cosine_similarity( totals[0][0][4] ) plt.figure(figsize=(8, 8)) plt.imshow(cos_sim, cmap="inferno", interpolation="none") im_ratio = 1 plt.colorbar(fraction=0.046 * im_ratio, pad=0.04) plt.title('Times') plt.xlabel("Position") plt.ylabel("Position") plt.tight_layout() plt.plot() cos_sim = pairwise.cosine_similarity( totals[0][0][5] ) plt.figure(figsize=(8, 8)) plt.imshow(cos_sim, cmap="inferno", interpolation="none") im_ratio = 1 plt.colorbar(fraction=0.046 * im_ratio, pad=0.04) plt.title('Durations') plt.xlabel("Position") plt.ylabel("Position") plt.tight_layout() plt.plot() cos_sim = pairwise.cosine_similarity( totals[0][0][6] ) plt.figure(figsize=(8, 8)) plt.imshow(cos_sim, cmap="inferno", interpolation="none") im_ratio = 1 plt.colorbar(fraction=0.046 * im_ratio, pad=0.04) plt.title('Channels') plt.xlabel("Position") plt.ylabel("Position") plt.tight_layout() plt.plot() cos_sim = pairwise.cosine_similarity( totals[0][0][7] ) plt.figure(figsize=(8, 8)) plt.imshow(cos_sim, cmap="inferno", interpolation="none") im_ratio = 1 plt.colorbar(fraction=0.046 * im_ratio, pad=0.04) plt.title('Instruments') plt.xlabel("Position") plt.ylabel("Position") plt.tight_layout() plt.plot() cos_sim = pairwise.cosine_similarity( totals[0][0][8] ) plt.figure(figsize=(8, 8)) plt.imshow(cos_sim, cmap="inferno", interpolation="none") im_ratio = 1 plt.colorbar(fraction=0.046 * im_ratio, pad=0.04) plt.title('Pitches') plt.xlabel("Position") plt.ylabel("Position") plt.tight_layout() plt.plot() cos_sim = pairwise.cosine_similarity( totals[0][0][9] ) plt.figure(figsize=(8, 8)) plt.imshow(cos_sim, cmap="inferno", interpolation="none") im_ratio = 1 plt.colorbar(fraction=0.046 * im_ratio, pad=0.04) plt.title('Velocities') plt.xlabel("Position") plt.ylabel("Position") plt.tight_layout() plt.plot() #@title Plot totals from MIDI metadata #=============================================================================== pitches_counts_totals = [0] * 128 for m in tqdm(meta_data): for mm in m[1][10][1]: if mm[0] < 128: pitches_counts_totals[mm[0]] += mm[1] y = range(128) plt.figure(figsize=(8, 8)) plt.plot(y, pitches_counts_totals) plt.title('MIDI Instruments Pitches') plt.xlabel("Pitch") plt.ylabel("Count") plt.tight_layout() plt.plot() sim_mat = [ [0]*128 for i in range(128)] x = 0 for p in pitches_counts_totals: y = 0 for pp in pitches_counts_totals: sim_mat[x][y] = min(10, (p / pp)) y += 1 x += 1 cos_sim = pairwise.cosine_similarity( sim_mat ) plt.figure(figsize=(8, 8)) plt.imshow(sim_mat, cmap="inferno", interpolation="none") im_ratio = 1 plt.colorbar(fraction=0.046 * im_ratio, pad=0.04) plt.title('MIDI Drums Pitches') plt.xlabel("Pitch") plt.ylabel("Count") plt.tight_layout() plt.plot() #=============================================================================== pitches_counts_totals = [1] * 128 for m in tqdm(meta_data): for mm in m[1][10][1]: if mm[0] > 128: pitches_counts_totals[mm[0] % 128] += mm[1] y = range(128) plt.figure(figsize=(8, 8)) plt.plot(y, pitches_counts_totals) plt.title('MIDI Drums Pitches') plt.xlabel("Pitch") plt.ylabel("Count") plt.tight_layout() plt.plot() sim_mat = [ [0]*128 for i in range(128)] x = 0 for p in pitches_counts_totals: y = 0 for pp in pitches_counts_totals: sim_mat[x][y] = min(10, (p / pp)) y += 1 x += 1 cos_sim = pairwise.cosine_similarity( sim_mat ) plt.figure(figsize=(8, 8)) plt.imshow(sim_mat, cmap="inferno", interpolation="none") im_ratio = 1 plt.colorbar(fraction=0.046 * im_ratio, pad=0.04) plt.title('MIDI Drums Pitches') plt.xlabel("Pitch") plt.ylabel("Count") plt.tight_layout() plt.plot() #=============================================================================== patches_counts_totals = [0] * 256 for m in tqdm(meta_data): for mm in m[1][12][1]: patches_counts_totals[mm[0]] += mm[1] y = range(128) plt.figure(figsize=(8, 8)) plt.plot(y, patches_counts_totals[:128]) plt.title('MIDI Patches') plt.xlabel("Patch") plt.ylabel('Count') plt.tight_layout() plt.plot() """# (LOAD SOURCE MIDI)""" #@title Load source MIDI full_path_to_source_MIDI = "/content/Los-Angeles-MIDI-Dataset/Come-To-My-Window-Modified-Sample-MIDI.mid" #@param {type:"string"} render_MIDI_to_audio = False #@param {type:"boolean"} #================================================================================= f = full_path_to_source_MIDI print('=' * 70) print('Loading MIDI file...') #================================================== score = MIDI.midi2score(open(f, 'rb').read()) events_matrix = [] track_count = 0 for s in score: if track_count > 0: track = s track.sort(key=lambda x: x[1]) events_matrix.extend(track) else: midi_ticks = s track_count += 1 events_matrix.sort(key=lambda x: x[1]) mult_pitches_counts = [] for i in range(-6, 6): events_matrix1 = [] for e in events_matrix: ev = copy.deepcopy(e) if e[0] == 'note': if e[3] == 9: ev[4] = ((e[4] % 128) + 128) else: ev[4] = ((e[4] % 128) + i) events_matrix1.append(ev) pitches_counts = [[y[0],y[1]] for y in Counter([y[4] for y in events_matrix1 if y[0] == 'note']).most_common()] pitches_counts.sort(key=lambda x: x[0], reverse=True) mult_pitches_counts.append(pitches_counts) patches_list = sorted(list(set([y[3] for y in events_matrix if y[0] == 'patch_change']))) #================================================== ms_score = MIDI.midi2ms_score(open(f, 'rb').read()) ms_events_matrix = [] itrack1 = 1 while itrack1 < len(ms_score): for event in ms_score[itrack1]: if event[0] == 'note': ms_events_matrix.append(event) itrack1 += 1 ms_events_matrix.sort(key=lambda x: x[1]) chords = [] pe = ms_events_matrix[0] cho = [] for e in ms_events_matrix: if (e[1] - pe[1]) == 0: if e[3] != 9: if (e[4] % 12) not in cho: cho.append(e[4] % 12) else: if len(cho) > 0: chords.append(sorted(cho)) cho = [] if e[3] != 9: if (e[4] % 12) not in cho: cho.append(e[4] % 12) pe = e if len(cho) > 0: chords.append(sorted(cho)) ms_chords_counts = sorted([[list(key), val] for key,val in Counter([tuple(c) for c in chords if len(c) > 1]).most_common()], reverse=True, key = lambda x: x[1]) times = [] pt = ms_events_matrix[0][1] start = True for e in ms_events_matrix: if (e[1]-pt) != 0 or start == True: times.append((e[1]-pt)) start = False pt = e[1] durs = [e[2] for e in ms_events_matrix] vels = [e[5] for e in ms_events_matrix] avg_time = int(sum(times) / len(times)) avg_dur = int(sum(durs) / len(durs)) mode_time = statistics.mode(times) mode_dur = statistics.mode(durs) median_time = int(statistics.median(times)) median_dur = int(statistics.median(durs)) #================================================== print('=' * 70) print('Done!') print('=' * 70) #============================================ # MIDI rendering code #============================================ print('Rendering source MIDI...') print('=' * 70) ms_score = MIDI.midi2ms_score(open(f, 'rb').read()) itrack = 1 song_f = [] while itrack < len(ms_score): for event in ms_score[itrack]: if event[0] == 'note': song_f.append(event) itrack += 1 song_f.sort(key=lambda x: x[1]) fname = f.split('.mid')[0] x = [] y =[] c = [] colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral'] for s in song_f: x.append(s[1] / 1000) y.append(s[4]) c.append(colors[s[3]]) if render_MIDI_to_audio: FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav')) display(Audio(str(fname + '.wav'), rate=16000)) plt.figure(figsize=(14,5)) ax=plt.axes(title=fname) ax.set_facecolor('black') plt.scatter(x,y, c=c) plt.xlabel("Time") plt.ylabel("Pitch") plt.show() """# (SEARCH AND EXPLORE)""" #@title MIDI Pitches Search #@markdown NOTE: You can stop the search at any time to render partial results #@markdown Match ratio control option maximum_match_ratio_to_search_for = 1 #@param {type:"slider", min:0, max:1, step:0.01} #@markdown MIDI pitches search options pitches_counts_cutoff_threshold_ratio = 0 #@param {type:"slider", min:0, max:1, step:0.05} search_transposed_pitches = False #@param {type:"boolean"} skip_exact_matches = False #@param {type:"boolean"} #@markdown Additional search options add_pitches_counts_ratios = False #@param {type:"boolean"} add_timings_ratios = False #@param {type:"boolean"} add_durations_ratios = False #@param {type:"boolean"} #@markdown Other options render_MIDI_to_audio = False #@param {type:"boolean"} download_MIDI = False #@param {type:"boolean"} print('=' * 70) print('MIDI Pitches Search') print('=' * 70) final_ratios = [] for d in tqdm(meta_data): try: p_counts = d[1][10][1] p_counts.sort(reverse = True, key = lambda x: x[1]) max_p_count = p_counts[0][1] trimmed_p_counts = [y for y in p_counts if y[1] >= (max_p_count * pitches_counts_cutoff_threshold_ratio)] total_p_counts = sum([y[1] for y in trimmed_p_counts]) if search_transposed_pitches: search_pitches = mult_pitches_counts else: search_pitches = [mult_pitches_counts[6]] #=================================================== ratios_list = [] #=================================================== atrat = [0] if add_timings_ratios: source_times = [avg_time, median_time, mode_time] match_times = meta_data[0][1][3][1] times_ratios = [] for i in range(len(source_times)): maxtratio = max(source_times[i], match_times[i]) mintratio = min(source_times[i], match_times[i]) times_ratios.append(mintratio / maxtratio) avg_times_ratio = sum(times_ratios) / len(times_ratios) atrat[0] = avg_times_ratio #=================================================== adrat = [0] if add_durations_ratios: source_durs = [avg_dur, median_dur, mode_dur] match_durs = meta_data[0][1][4][1] durs_ratios = [] for i in range(len(source_durs)): maxtratio = max(source_durs[i], match_durs[i]) mintratio = min(source_durs[i], match_durs[i]) durs_ratios.append(mintratio / maxtratio) avg_durs_ratio = sum(durs_ratios) / len(durs_ratios) adrat[0] = avg_durs_ratio #=================================================== for m in search_pitches: sprat = [] m.sort(reverse = True, key = lambda x: x[1]) max_pitches_count = m[0][1] trimmed_pitches_counts = [y for y in m if y[1] >= (max_pitches_count * pitches_counts_cutoff_threshold_ratio)] total_pitches_counts = sum([y[1] for y in trimmed_pitches_counts]) same_pitches = set([T[0] for T in trimmed_p_counts]) & set([m[0] for m in trimmed_pitches_counts]) num_same_pitches = len(same_pitches) if num_same_pitches == len(trimmed_pitches_counts): same_pitches_ratio = (num_same_pitches / len(trimmed_p_counts)) else: same_pitches_ratio = (num_same_pitches / max(len(trimmed_p_counts), len(trimmed_pitches_counts))) if skip_exact_matches: if same_pitches_ratio == 1: same_pitches_ratio = 0 sprat.append(same_pitches_ratio) #=================================================== spcrat = [0] if add_pitches_counts_ratios: same_trimmed_p_counts = sorted([T for T in trimmed_p_counts if T[0] in same_pitches], reverse = True) same_trimmed_pitches_counts = sorted([T for T in trimmed_pitches_counts if T[0] in same_pitches], reverse = True) same_trimmed_p_counts_ratios = [[s[0], s[1] / total_p_counts] for s in same_trimmed_p_counts] same_trimmed_pitches_counts_ratios = [[s[0], s[1] / total_pitches_counts] for s in same_trimmed_pitches_counts] same_pitches_counts_ratios = [] for i in range(len(same_trimmed_p_counts_ratios)): mincratio = min(same_trimmed_p_counts_ratios[i][1], same_trimmed_pitches_counts_ratios[i][1]) maxcratio = max(same_trimmed_p_counts_ratios[i][1], same_trimmed_pitches_counts_ratios[i][1]) same_pitches_counts_ratios.append([same_trimmed_p_counts_ratios[i][0], mincratio / maxcratio]) same_counts_ratios = [s[1] for s in same_pitches_counts_ratios] if len(same_counts_ratios) > 0: avg_same_pitches_counts_ratio = sum(same_counts_ratios) / len(same_counts_ratios) else: avg_same_pitches_counts_ratio = 0 spcrat[0] = avg_same_pitches_counts_ratio #=================================================== r_list = [sprat[0]] if add_pitches_counts_ratios: r_list.append(spcrat[0]) if add_timings_ratios: r_list.append(atrat[0]) if add_durations_ratios: r_list.append(adrat[0]) ratios_list.append(r_list) #=================================================== avg_ratios_list = [] for r in ratios_list: avg_ratios_list.append(sum(r) / len(r)) #=================================================== final_ratio = max(avg_ratios_list) if final_ratio > maximum_match_ratio_to_search_for: final_ratio = 0 final_ratios.append(final_ratio) #=================================================== except KeyboardInterrupt: break except Exception as e: print('WARNING !!!') print('=' * 70) print('Error detected:', e) final_ratios.append(0) print('=' * 70) break max_ratio = max(final_ratios) max_ratio_index = final_ratios.index(max_ratio) print('FOUND') print('=' * 70) print('Match ratio', max_ratio) print('MIDI file name', meta_data[max_ratio_index][0]) print('=' * 70) pprint.pprint(['Sample metadata entries', meta_data[max_ratio_index][1][:8]], compact = True) print('=' * 70) #============================================ # MIDI rendering code #============================================ print('Rendering source MIDI...') print('=' * 70) fn = meta_data[max_ratio_index][0] fn_idx = [y[0] for y in LAMD_files_list].index(fn) f = LAMD_files_list[fn_idx][1] ms_score = MIDI.midi2ms_score(open(f, 'rb').read()) itrack = 1 song_f = [] while itrack < len(ms_score): for event in ms_score[itrack]: if event[0] == 'note': song_f.append(event) itrack += 1 song_f.sort(key=lambda x: x[1]) fname = f.split('.mid')[0] x = [] y =[] c = [] colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral'] for s in song_f: x.append(s[1] / 1000) y.append(s[4]) c.append(colors[s[3]]) if render_MIDI_to_audio: FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav')) display(Audio(str(fname + '.wav'), rate=16000)) plt.figure(figsize=(14,5)) ax=plt.axes(title=fname) ax.set_facecolor('black') plt.scatter(x,y, c=c) plt.xlabel("Time") plt.ylabel("Pitch") plt.show() #============================================== if download_MIDI: print('=' * 70) print('Downloading MIDI file', str(fn) + '.mid') files.download(f) print('=' * 70) #@title MIDI Chords Search #@markdown NOTE: You can stop the search at any time to render partial results maximum_match_ratio_to_search_for = 1 #@param {type:"slider", min:0, max:1, step:0.01} chords_counts_cutoff_threshold_ratio = 0 #@param {type:"slider", min:0, max:1, step:0.05} skip_exact_matches = False #@param {type:"boolean"} render_MIDI_to_audio = False #@param {type:"boolean"} download_MIDI = False #@param {type:"boolean"} print('=' * 70) print('MIDI Chords Search') print('=' * 70) ratios = [] for d in tqdm(meta_data): try: c_counts = d[1][8][1] if len(c_counts) == 0: c_counts = copy.deepcopy([[[0, 0], 0]]) c_counts.sort(reverse = True, key = lambda x: x[0][1]) max_c_count = c_counts[0][1] trimmed_c_counts = [y for y in c_counts if y[1] >= (max_c_count * chords_counts_cutoff_threshold_ratio)] trimmed_c_counts.sort(reverse = True, key = lambda x: x[1]) max_chords_count = ms_chords_counts[0][1] trimmed_chords_counts = [y for y in ms_chords_counts if y[1] >= (max_chords_count * chords_counts_cutoff_threshold_ratio)] num_same_chords = len(set([tuple(T[0]) for T in trimmed_c_counts]) & set([tuple(t[0]) for t in trimmed_chords_counts])) if num_same_chords == len(trimmed_chords_counts): same_chords_ratio = (num_same_chords / len(trimmed_c_counts)) else: same_chords_ratio = (num_same_chords / max(len(trimmed_c_counts), len(trimmed_chords_counts))) if skip_exact_matches: if same_chords_ratio == 1: same_chords_ratio = 0 if same_chords_ratio > maximum_match_ratio_to_search_for: same_chords_ratio = 0 ratios.append(same_chords_ratio) except KeyboardInterrupt: break except Exception as e: print('WARNING !!!') print('=' * 70) print('Error detected:', e) ratios.append(0) print('=' * 70) continue max_ratio = max(ratios) max_ratio_index = ratios.index(max(ratios)) print('FOUND') print('=' * 70) print('Match ratio', max_ratio) print('MIDI file name', meta_data[max_ratio_index][0]) print('=' * 70) pprint.pprint(['Sample metadata entries', meta_data[max_ratio_index][1][:8]], compact = True) print('=' * 70) #============================================ # MIDI rendering code #============================================ print('Rendering source MIDI...') print('=' * 70) fn = meta_data[max_ratio_index][0] fn_idx = [y[0] for y in LAMD_files_list].index(fn) f = LAMD_files_list[fn_idx][1] ms_score = MIDI.midi2ms_score(open(f, 'rb').read()) itrack = 1 song_f = [] while itrack < len(ms_score): for event in ms_score[itrack]: if event[0] == 'note': song_f.append(event) itrack += 1 song_f.sort(key=lambda x: x[1]) fname = f.split('.mid')[0] x = [] y =[] c = [] colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral'] for s in song_f: x.append(s[1] / 1000) y.append(s[4]) c.append(colors[s[3]]) if render_MIDI_to_audio: FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav')) display(Audio(str(fname + '.wav'), rate=16000)) plt.figure(figsize=(14,5)) ax=plt.axes(title=fname) ax.set_facecolor('black') plt.scatter(x,y, c=c) plt.xlabel("Time") plt.ylabel("Pitch") plt.show() #============================================== if download_MIDI: print('=' * 70) print('Downloading MIDI file', str(fn) + '.mid') files.download(f) print('=' * 70) #@title MIDI Patches Search #@markdown NOTE: You can stop the search at any time to render partial results maximum_match_ratio_to_search_for = 1 #@param {type:"slider", min:0, max:1, step:0.01} skip_exact_matches = False #@param {type:"boolean"} render_MIDI_to_audio = False #@param {type:"boolean"} download_MIDI = False #@param {type:"boolean"} print('=' * 70) print('MIDI Patches Search') print('=' * 70) ratios = [] for d in tqdm(meta_data): try: p_list= d[1][11][1] num_same_patches = len(set(p_list) & set(patches_list)) if len(set(p_list + patches_list)) > 0: if num_same_patches == len(patches_list): same_patches_ratio = num_same_patches / len(p_list) else: same_patches_ratio = num_same_patches / max(len(p_list), len(patches_list)) else: same_patches_ratio = 0 if skip_exact_matches: if same_patches_ratio == 1: same_patches_ratio = 0 if same_patches_ratio > maximum_match_ratio_to_search_for: same_patches_ratio = 0 ratios.append(same_patches_ratio) except KeyboardInterrupt: break except Exception as e: print('WARNING !!!') print('=' * 70) print('Error detected:', e) ratios.append(0) print('=' * 70) continue max_ratio = max(ratios) max_ratio_index = ratios.index(max(ratios)) print('FOUND') print('=' * 70) print('Match ratio', max_ratio) print('MIDI file name', meta_data[max_ratio_index][0]) print('=' * 70) print('Found MIDI patches list', meta_data[max_ratio_index][1][12][1]) print('=' * 70) #============================================ # MIDI rendering code #============================================ print('Rendering source MIDI...') print('=' * 70) fn = meta_data[max_ratio_index][0] fn_idx = [y[0] for y in LAMD_files_list].index(fn) f = LAMD_files_list[fn_idx][1] ms_score = MIDI.midi2ms_score(open(f, 'rb').read()) itrack = 1 song_f = [] while itrack < len(ms_score): for event in ms_score[itrack]: if event[0] == 'note': song_f.append(event) itrack += 1 song_f.sort(key=lambda x: x[1]) fname = f.split('.mid')[0] x = [] y =[] c = [] colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral'] for s in song_f: x.append(s[1] / 1000) y.append(s[4]) c.append(colors[s[3]]) if render_MIDI_to_audio: FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav')) display(Audio(str(fname + '.wav'), rate=16000)) plt.figure(figsize=(14,5)) ax=plt.axes(title=fname) ax.set_facecolor('black') plt.scatter(x,y, c=c) plt.xlabel("Time") plt.ylabel("Pitch") plt.show() #============================================== if download_MIDI: print('=' * 70) print('Downloading MIDI file', str(fn) + '.mid') files.download(f) print('=' * 70) #@title Metadata Search #@markdown You can search the metadata by search query or by MIDI md5 hash file name search_query = "Come To My Window" #@param {type:"string"} md5_hash_MIDI_file_name = "d9a7e1c6a375b8e560155a5977fc10f8" #@param {type:"string"} case_sensitive_search = False #@param {type:"boolean"} fields_to_search = ['track_name', 'text_event', 'lyric', 'copyright_text_event', 'marker', 'text_event_08', 'text_event_09', 'text_event_0a', 'text_event_0b', 'text_event_0c', 'text_event_0d', 'text_event_0e', 'text_event_0f', ] print('=' * 70) print('Los Angeles MIDI Dataset Metadata Search') print('=' * 70) print('Searching...') print('=' * 70) if md5_hash_MIDI_file_name != '': for d in tqdm(meta_data): try: if d[0] == md5_hash_MIDI_file_name: print('Found!') print('=' * 70) print('Metadata index:', meta_data.index(d)) print('MIDI file name:', meta_data[meta_data.index(d)][0]) print('-' * 70) pprint.pprint(['Result:', d[1][:16]], compact = True) print('=' * 70) break except KeyboardInterrupt: print('Ending search...') print('=' * 70) break except Exception as e: print('WARNING !!!') print('=' * 70) print('Error detected:', e) print('=' * 70) continue if d[0] != md5_hash_MIDI_file_name: print('Not found!') print('=' * 70) print('md5 hash was not found!') print('Ending search...') print('=' * 70) else: for d in tqdm(meta_data): try: for dd in d[1]: if dd[0] in fields_to_search: if case_sensitive_search: if str(search_query) in str(dd[2]): print('Found!') print('=' * 70) print('Metadata index:', meta_data.index(d)) print('MIDI file name:', meta_data[meta_data.index(d)][0]) print('-' * 70) pprint.pprint(['Result:', dd[2][:16]], compact = True) print('=' * 70) else: if str(search_query).lower() in str(dd[2]).lower(): print('Found!') print('=' * 70) print('Metadata index:', meta_data.index(d)) print('MIDI file name:', meta_data[meta_data.index(d)][0]) print('-' * 70) pprint.pprint(['Result:', dd[2][:16]], compact = True) print('=' * 70) except KeyboardInterrupt: print('Ending search...') print('=' * 70) break except: print('Ending search...') print('=' * 70) break """# (MIDI FILE PLAYER)""" #@title MIDI file player #@markdown NOTE: You can use md5 hash file name or full MIDI file path to play it md5_hash_MIDI_file_name = "d9a7e1c6a375b8e560155a5977fc10f8" #@param {type:"string"} full_path_to_MIDI = "/content/Los-Angeles-MIDI-Dataset/Come-To-My-Window-Modified-Sample-MIDI.mid" #@param {type:"string"} render_MIDI_to_audio = False #@param {type:"boolean"} download_MIDI = False #@param {type:"boolean"} #============================================ # MIDI rendering code #============================================ print('=' * 70) print('MIDI file player') print('=' * 70) try: if os.path.exists(full_path_to_MIDI): f = full_path_to_MIDI print('Using full path to MIDI') else: fn = md5_hash_MIDI_file_name fn_idx = [y[0] for y in LAMD_files_list].index(fn) f = LAMD_files_list[fn_idx][1] print('Using md5 hash filename') print('=' * 70) print('Rendering MIDI...') print('=' * 70) ms_score = MIDI.midi2ms_score(open(f, 'rb').read()) itrack = 1 song_f = [] while itrack < len(ms_score): for event in ms_score[itrack]: if event[0] == 'note': song_f.append(event) itrack += 1 song_f.sort(key=lambda x: x[1]) fname = f.split('.mid')[0] x = [] y =[] c = [] colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral'] for s in song_f: x.append(s[1] / 1000) y.append(s[4]) c.append(colors[s[3]]) if render_MIDI_to_audio: FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav')) display(Audio(str(fname + '.wav'), rate=16000)) plt.figure(figsize=(14,5)) ax=plt.axes(title=fname) ax.set_facecolor('black') plt.scatter(x,y, c=c) plt.xlabel("Time") plt.ylabel("Pitch") plt.show() #============================================== if download_MIDI: print('=' * 70) print('Downloading MIDI file', str(fn) + '.mid') files.download(f) print('=' * 70) except: print('File not found!!!') print('Check the filename!') print('=' * 70) """# (COLAB MIDI FILES LOCATOR/DOWNLOADER)""" #@title Loacate and/or download desired MIDI files by MIDI md5 hash file names MIDI_md5_hash_file_name_1 = "d9a7e1c6a375b8e560155a5977fc10f8" #@param {type:"string"} MIDI_md5_hash_file_name_2 = "" #@param {type:"string"} MIDI_md5_hash_file_name_3 = "" #@param {type:"string"} MIDI_md5_hash_file_name_4 = "" #@param {type:"string"} MIDI_md5_hash_file_name_5 = "" #@param {type:"string"} download_located_files = False #@param {type:"boolean"} print('=' * 70) print('MIDI files locator and downloader') print('=' * 70) md5_list = [] if MIDI_md5_hash_file_name_1 != '': md5_list.append(MIDI_md5_hash_file_name_1) if MIDI_md5_hash_file_name_2 != '': md5_list.append(MIDI_md5_hash_file_name_2) if MIDI_md5_hash_file_name_3 != '': md5_list.append(MIDI_md5_hash_file_name_3) if MIDI_md5_hash_file_name_4 != '': md5_list.append(MIDI_md5_hash_file_name_4) if MIDI_md5_hash_file_name_5 != '': md5_list.append(MIDI_md5_hash_file_name_5) if len(md5_list) > 0: for m in md5_list: try: fn = m fn_idx = [y[0] for y in LAMD_files_list].index(fn) f = LAMD_files_list[fn_idx][1] print('Found md5 hash file name', m) location_str = '' fl = f.split('/') for fa in fl[:-1]: if fa != '' and fa != 'content': location_str += '/' location_str += str(fa) print('Colab location/folder', location_str) if download_located_files: print('Downloading MIDI file', str(m) + '.mid') files.download(f) print('=' * 70) except: print('md5 hash file name', m, 'not found!!!') print('Check the file name!') print('=' * 70) continue else: print('No md5 hash file names were specified!') print('Check input!') print('=' * 70) """# (CUSTOM ANALYSIS TEMPLATE)""" #@title Los Angeles MIDI Dataset Reader print('=' * 70) print('Los Angeles MIDI Dataset Reader') print('=' * 70) print('Starting up...') print('=' * 70) ########### print('Loading MIDI files...') print('This may take a while on a large dataset in particular.') dataset_addr = "/content/LAMD/MIDIs" # os.chdir(dataset_addr) filez = list() for (dirpath, dirnames, filenames) in os.walk(dataset_addr): filez += [os.path.join(dirpath, file) for file in filenames] if filez == []: print('Could not find any MIDI files. Please check Dataset dir...') print('=' * 70) print('=' * 70) print('Randomizing file list...') random.shuffle(filez) print('=' * 70) ########### START_FILE_NUMBER = 0 LAST_SAVED_BATCH_COUNT = 0 input_files_count = START_FILE_NUMBER files_count = LAST_SAVED_BATCH_COUNT stats = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] print('Reading MIDI files. Please wait...') print('=' * 70) for f in tqdm(filez[START_FILE_NUMBER:]): try: input_files_count += 1 fn = os.path.basename(f) fn1 = fn.split('.mid')[0] #======================================================= # START PROCESSING #======================================================= # Convering MIDI to score with MIDI.py module score = MIDI.midi2score(open(f, 'rb').read()) events_matrix = [] itrack = 1 while itrack < len(score): for event in score[itrack]: events_matrix.append(event) itrack += 1 # Sorting... events_matrix.sort(key=lambda x: x[1]) if len(events_matrix) > 0: #======================================================= # INSERT YOUR CUSTOM ANAYLSIS CODE RIGHT HERE #======================================================= # Processed files counter files_count += 1 # Saving every 5000 processed files if files_count % 10000 == 0: print('=' * 70) print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio') print('=' * 70) except KeyboardInterrupt: print('Saving current progress and quitting...') break except Exception as ex: print('WARNING !!!') print('=' * 70) print('Bad MIDI:', f) print('Error detected:', ex) print('=' * 70) continue print('=' * 70) print('Final files counts:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio') print('=' * 70) print('Resulting Stats:') print('=' * 70) print('Total good processed MIDI files:', files_count) print('=' * 70) print('Done!') print('=' * 70) """# Congrats! You did it! :)"""