# Loading script for the ViquiQuAD dataset. import json import datasets logger = datasets.logging.get_logger(__name__) _CITATION = """ Rodriguez-Penagos, Carlos Gerardo, & Armentano-Oller, Carme. (2021). ViquiQuAD: an extractive QA dataset from Catalan Wikipedia (Version ViquiQuad_v.1.0.1) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.4761412 """ _DESCRIPTION = """ ViquiQuAD: an extractive QA dataset from Catalan Wikipedia. This dataset contains 3111 contexts extracted from a set of 597 high quality original (no translations) articles in the Catalan Wikipedia "Viquipèdia" (ca.wikipedia.org), and 1 to 5 questions with their answer for each fragment. Viquipedia articles are used under CC-by-sa licence. This dataset can be used to build extractive-QA and Language Models. Funded by the Generalitat de Catalunya, Departament de Polítiques Digitals i Administració Pública (AINA), MT4ALL and Plan de Impulso de las Tecnologías del Lenguaje (Plan TL). """ _HOMEPAGE = """https://zenodo.org/record/4562345#.YK41aqGxWUk""" _URL = "https://huggingface.co/datasets/bsc/viquiquad/resolve/main/" _TRAINING_FILE = "train.json" _DEV_FILE = "dev.json" _TEST_FILE = "test.json" class ViquiQuADConfig(datasets.BuilderConfig): """ Builder config for the ViquiQuAD dataset """ def __init__(self, **kwargs): """BuilderConfig for ViquiQuAD. Args: **kwargs: keyword arguments forwarded to super. """ super(ViquiQuADConfig, self).__init__(**kwargs) class ViquiQuAD(datasets.GeneratorBasedBuilder): """ViquiQuAD Dataset.""" BUILDER_CONFIGS = [ ViquiQuADConfig( name="ViquiQuAD", version=datasets.Version("1.0.1"), description="ViquiQuAD dataset", ), ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "title": datasets.Value("string"), "context": datasets.Value("string"), "question": datasets.Value("string"), "answers":[ { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), } ] } ), # No default supervised_keys (as we have to pass both question # and context as input). supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" urls_to_download = { "train": f"{_URL}{_TRAINING_FILE}", "dev": f"{_URL}{_DEV_FILE}", "test": f"{_URL}{_TEST_FILE}", } downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), ] def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" logger.info("generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: viquiquad = json.load(f, encoding="utf-8") for article in viquiquad["data"]: title = article.get("title", "").strip() for paragraph in article["paragraphs"]: context = paragraph["context"].strip() for qa in paragraph["qas"]: question = qa["question"].strip() id_ = qa["id"] # answer_starts = [answer["answer_start"] for answer in qa["answers"]] # answers = [answer["text"].strip() for answer in qa["answers"]] text = qa["answers"][0]["text"] answer_start = qa["answers"][0]["answer_start"] # Features currently used are "context", "question", and "answers". # Others are extracted here for the ease of future expansions. yield id_, { "title": title, "context": context, "question": question, "id": id_, "answers": [{"text": text, "answer_start": answer_start}] }