# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import numpy as np from loguru import logger from projectaria_tools.core.sophus import SE3 class HandEyeSolver: def __init__(self, smooth: bool, window: int, skip: int = 240, stride: int = 1): self.stride = int(stride) self.smooth = smooth self.skip = int(skip) self.window = int(window) if self.window < 240: self.smooth = False def so3xR3(self, T_Wa_A: list[SE3], T_Wb_B: list[SE3]) -> SE3: """ \return T_A_B using so3xR3 SVD decomposition. """ assert len(T_Wa_A) == len(T_Wb_B) N = len(T_Wa_A) - self.stride se3_A1_A2 = [T_Wa_A[i].inverse() @ T_Wa_A[i + self.stride] for i in range(N)] se3_B1_B2 = [T_Wb_B[i].inverse() @ T_Wb_B[i + self.stride] for i in range(N)] # solve for R log_A1_A2 = [x.rotation().log() for x in se3_A1_A2] log_B1_B2 = [x.rotation().log() for x in se3_B1_B2] A = np.stack(log_A1_A2, axis=-1).squeeze() B = np.stack(log_B1_B2, axis=-1).squeeze() logger.debug(f"{A.shape=}, {B.shape=}") matrixU, S, matrixVh = np.linalg.svd( B @ A.transpose(), full_matrices=True, compute_uv=True ) logger.debug(f"{matrixU.shape=}, {S.shape=}, {matrixVh.shape=}") RX = matrixVh @ matrixU.transpose() if np.linalg.det(RX) < 0: RX[2, :] = RX[2, :] * -1.0 # solve for t jacobian = [x.rotation().to_matrix() - np.eye(3) for x in se3_A1_A2] jacobian = np.concatenate(jacobian, axis=0) assert jacobian.shape == (N * 3, 3) logger.debug(f"{jacobian.shape=}") residual = [ RX @ b.translation().reshape(3, 1) - a.translation().reshape(3, 1) for a, b in zip(se3_A1_A2, se3_B1_B2) ] residual = np.concatenate(residual, axis=0) assert residual.shape == (N * 3, 1) logger.debug(f"{residual.shape=}") JTJ = jacobian.T @ jacobian JTr = jacobian.T @ residual tX = np.linalg.lstsq(JTJ, JTr, rcond=None)[0] T_A_B = np.ndarray([3, 4]) T_A_B[:3, :3] = RX T_A_B[:3, 3] = tX.squeeze() logger.debug(f"{T_A_B=}\n") T_A_B = SE3.from_matrix3x4(T_A_B) return T_A_B def __call__(self, T_Wa_A: list[SE3], T_Wb_B: list[SE3]) -> list[SE3]: N = len(T_Wa_A) assert N == len(T_Wb_B) if self.window >= N or not self.smooth: T_A_B = self.so3xR3(T_Wa_A, T_Wb_B) return [T_A_B] Ts_A_B = [] for i in range(0, N, self.skip): istart = int(i - self.window / 2) if istart < 0: istart = 0 iend = istart + self.window if iend >= N: iend = -1 istart = N - self.window t_wa_a = T_Wa_A[istart:iend] t_wb_b = T_Wb_B[istart:iend] T_A_B = self.so3xR3(t_wa_a, t_wb_b) Ts_A_B.append(T_A_B) return Ts_A_B