from diffusers import FluxTransformer2DModel from huggingface_hub import snapshot_download from accelerate import init_empty_weights from diffusers.models.model_loading_utils import load_model_dict_into_meta import safetensors.torch import glob import torch with init_empty_weights(): config = FluxTransformer2DModel.load_config("black-forest-labs/FLUX.1-dev", subfolder="transformer") model = FluxTransformer2DModel.from_config(config) dev_ckpt = snapshot_download(repo_id="black-forest-labs/FLUX.1-dev", allow_patterns="transformer/*") schnell_ckpt = snapshot_download(repo_id="black-forest-labs/FLUX.1-schnell", allow_patterns="transformer/*") dev_shards = sorted(glob.glob(f"{dev_ckpt}/transformer/*.safetensors")) schnell_shards = sorted(glob.glob(f"{schnell_ckpt}/transformer/*.safetensors")) merged_state_dict = {} guidance_state_dict = {} for i in range(len((dev_shards))): state_dict_dev_temp = safetensors.torch.load_file(dev_shards[i]) state_dict_schnell_temp = safetensors.torch.load_file(schnell_shards[i]) keys = list(state_dict_dev_temp.keys()) for k in keys: if "guidance" not in k: merged_state_dict[k] = (state_dict_dev_temp.pop(k) + state_dict_schnell_temp.pop(k)) / 2 else: guidance_state_dict[k] = state_dict_dev_temp.pop(k) if len(state_dict_dev_temp) > 0: raise ValueError(f"There should not be any residue but got: {list(state_dict_dev_temp.keys())}.") if len(state_dict_schnell_temp) > 0: raise ValueError(f"There should not be any residue but got: {list(state_dict_dev_temp.keys())}.") merged_state_dict.update(guidance_state_dict) load_model_dict_into_meta(model, merged_state_dict) model.to(torch.bfloat16).save_pretrained("merged-flux")