#!/bin/env python """ Plan: Read in "dictionary" for list of words Read in pre-calculated "proper" embedding for each word from safetensor file Prompt user for a word from the list Generate a tensor array of distance to all the other known words Print out the 20 closest ones """ import sys mtype='ViT-H-14' mname='laion2B-s32B-b79K' print(f"Configured for {mtype}, {mname}") if len(sys.argv) < 3: print("Error: need embeddings file and dictionary name") sys.exit(1) import torch import open_clip from safetensors import safe_open #from transformers import CLIPProcessor,CLIPModel device=torch.device("cuda") print("Loading model") cmodel, _, preprocess = open_clip.create_model_and_transforms(mtype, pretrained=mname) tokenizer = open_clip.get_tokenizer(mtype) print("Moving model to cuda") cmodel.to(device) #embed_file="embeddings.safetensors" embed_file=sys.argv[1] dictionary=sys.argv[2] print(f"read in words from {dictionary} now",file=sys.stderr) with open(dictionary,"r") as f: tokendict = f.readlines() wordlist = [token.strip() for token in tokendict] # Remove trailing newlines print(len(wordlist),"lines read") print(f"read in {embed_file} now",file=sys.stderr) emodel = safe_open(embed_file,framework="pt",device="cuda") embs=emodel.get_tensor("embeddings") embs.to(device) print("Shape of loaded embeds =",embs.shape) def standard_embed_calc(text): with torch.no_grad(): ttext = tokenizer(text) text_features = cmodel.encode_text(ttext) embedding = text_features[0] #print("shape of text is",ttext.shape) return embedding def print_distances(targetemb): targetdistances = torch.cdist( targetemb.unsqueeze(0), embs, p=2) print("shape of distances...",targetdistances.shape) smallest_distances, smallest_indices = torch.topk(targetdistances[0], 20, largest=False) smallest_distances=smallest_distances.tolist() smallest_indices=smallest_indices.tolist() for d,i in zip(smallest_distances,smallest_indices): print(wordlist[i],"(",d,")") # Find 10 closest tokens to targetword. # Will include the word itself def find_closest(targetword): try: targetindex=wordlist.index(targetword) targetemb=embs[targetindex] print_distances(targetemb) return except ValueError: print(targetword,"not found in cache") print("Now doing with full calc embed") targetemb=standard_embed_calc(targetword) print_distances(targetemb) while True: input_text=input("Input a word now:") find_closest(input_text)