#!/bin/env python """ Plan: Read in "dictionary" for list of words Read in pre-calculated "proper" embedding for each word from safetensor file Prompt user for a word from the list Generate a tensor array of distance to all the other known words Print out the 20 closest ones """ import sys import json import torch from safetensors import safe_open from transformers import CLIPProcessor,CLIPModel clipsrc="openai/clip-vit-large-patch14" processor=None model=None if len(sys.argv) == 2: embed_file=sys.argv[1] else: print("You have to give name of embeddings file") sys.exit(1) device=torch.device("cuda") def init(): global processor global model # Load the processor and model print("loading processor from "+clipsrc,file=sys.stderr) processor = CLIPProcessor.from_pretrained(clipsrc) print("done",file=sys.stderr) print("loading model from "+clipsrc,file=sys.stderr) model = CLIPModel.from_pretrained(clipsrc) print("done",file=sys.stderr) model = model.to(device) print("read in words from dictionary now",file=sys.stderr) with open("dictionary","r") as f: tokendict = f.readlines() wordlist = [token.strip() for token in tokendict] # Remove trailing newlines print(len(wordlist),"lines read") print("read in embeddings now",file=sys.stderr) model = safe_open(embed_file,framework="pt",device="cuda") embs=model.get_tensor("embeddings") embs.to(device) print("Shape of loaded embeds =",embs.shape) def standard_embed_calc(text): if processor == None: init() inputs = processor(text=text, return_tensors="pt") inputs.to(device) with torch.no_grad(): text_features = model.get_text_features(**inputs) embedding = text_features[0] return embedding def print_distances(targetemb): targetdistances = torch.cdist( targetemb.unsqueeze(0), embs, p=2) print("shape of distances...",targetdistances.shape) smallest_distances, smallest_indices = torch.topk(targetdistances[0], 20, largest=False) smallest_distances=smallest_distances.tolist() smallest_indices=smallest_indices.tolist() for d,i in zip(smallest_distances,smallest_indices): print(wordlist[i],"(",d,")") # Find 10 closest tokens to targetword. # Will include the word itself def find_closest(targetword): try: targetindex=wordlist.index(targetword) targetemb=embs[targetindex] print_distances(targetemb) return except ValueError: print(targetword,"not found in cache") print("Now doing with full calc embed") targetemb=standard_embed_calc(targetword) print_distances(targetemb) while True: input_text=input("Input a word now:") find_closest(input_text)