#!/bin/env python """ Work in progress Similar to generate-embedding.py, but outputs in the format that SDXL models expect. I hope. Also tries to load the SDXL base text encoder specifically. Requires you populate the two paths mentioned immediately below this comment section. You can get them from: https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/tree/main/text_encoder_2 (rename diffusion_pytorch_model.safetensors to text_encoder_xl.safetensors) Plan: Take input for a single word or phrase. Save out calculations, to "generatedXL.safetensors" Note that you can generate an embedding from two words, or even more I could also include a "clip_l" key, but.. Meh. """ model_path = "text_encoder_xl.safetensors" model_config = "text_encoder_2_config.json" import sys import torch from transformers import CLIPProcessor, CLIPTextModel, CLIPTextModelWithProjection from safetensors.torch import save_file # 1. Load the pretrained model # Note that it doesnt like a leading "/" in the name!! model=None processor=None device=torch.device("cuda") # Note the default, required 2 pathnames def initXLCLIPmodel(): global model print("loading",model_path) model = CLIPTextModelWithProjection.from_pretrained(model_path,config=model_config,local_files_only=True,use_safetensors=True) model.to(device) # a bit wierd, but SDXL seems to still use this tokeninzer def initCLIPprocessor(): global processor CLIPname= "openai/clip-vit-large-patch14" print("getting processor from",CLIPname) processor = CLIPProcessor.from_pretrained(CLIPname) def embed_from_text(text): global processor,model if processor == None: initCLIPprocessor() initXLCLIPmodel() print("getting tokens") inputs = processor(text=text, return_tensors="pt") inputs.to(device) print("getting embeddings?") outputs = model(**inputs) print("finalizing") embeddings = outputs.text_embeds return embeddings ########################################## word = input("type a phrase to generate an embedding for: ") emb = embed_from_text(word) #embs=emb.unsqueeze(0) # stupid matrix magic to make it the required shape embs=emb print("Shape of result = ",embs.shape) # Note that programs like shapes such as # torch.Size([1, 768]) output = "generatedXL.safetensors" # if single word used, then rename output file if all(char.isalpha() for char in word): output=f"{word}XL.safetensors" print(f"Saving to {output}...") save_file({"clip_g": embs}, output) # technically we are saving a shape ([1][1280]) # whereas official XL embeddings files, are # (clip_g) shape ([8][1280]) # (clip_l) shape ([8][768])