#!/bin/env python """ Work in progress Plan: Read in fullword.json for list of works and token Generate "proper" embedding for each token, and store in tensor file Generate a tensor array of distance to every other token/embedding Save it out """ import sys import json import torch from safetensors.torch import save_file from transformers import CLIPProcessor,CLIPModel clipsrc="openai/clip-vit-large-patch14" processor=None model=None device=torch.device("cuda") def init(): global processor global model # Load the processor and model print("loading processor from "+clipsrc,file=sys.stderr) processor = CLIPProcessor.from_pretrained(clipsrc) print("done",file=sys.stderr) print("loading model from "+clipsrc,file=sys.stderr) model = CLIPModel.from_pretrained(clipsrc) print("done",file=sys.stderr) model = model.to(device) # Expect SINGLE WORD ONLY def standard_embed_calc(text): inputs = processor(text=text, return_tensors="pt") inputs.to(device) with torch.no_grad(): text_features = model.get_text_features(**inputs) embedding = text_features[0] return embedding init() with open("dictionary","r") as f: tokendict = f.readlines() tokendict = [token.strip() for token in tokendict] # Remove trailing newlines print("generate embeddings for each now",file=sys.stderr) count=1 all_embeddings = [] for word in tokendict: emb = standard_embed_calc(word) emb=emb.unsqueeze(0) # stupid matrix magic to make the cat work all_embeddings.append(emb) count+=1 if (count %100) ==0: print(count) embs = torch.cat(all_embeddings,dim=0) print("Shape of result = ",embs.shape) print("Saving to embeddings.safetensors...") save_file({"embeddings": embs}, "embeddings.safetensors")