ppak10 commited on
Commit
b758f33
β€’
1 Parent(s): 3252ef7

Updates notebooks.

Browse files
.gitignore ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ pip-wheel-metadata/
24
+ share/python-wheels/
25
+ *.egg-info/
26
+ .installed.cfg
27
+ *.egg
28
+ MANIFEST
29
+
30
+ # PyInstaller
31
+ # Usually these files are written by a python script from a template
32
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
33
+ *.manifest
34
+ *.spec
35
+
36
+ # Installer logs
37
+ pip-log.txt
38
+ pip-delete-this-directory.txt
39
+
40
+ # Unit test / coverage reports
41
+ htmlcov/
42
+ .tox/
43
+ .nox/
44
+ .coverage
45
+ .coverage.*
46
+ .cache
47
+ nosetests.xml
48
+ coverage.xml
49
+ *.cover
50
+ *.py,cover
51
+ .hypothesis/
52
+ .pytest_cache/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ target/
76
+
77
+ # Jupyter Notebook
78
+ .ipynb_checkpoints
79
+
80
+ # IPython
81
+ profile_default/
82
+ ipython_config.py
83
+
84
+ # pyenv
85
+ .python-version
86
+
87
+ # pipenv
88
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
89
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
90
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
91
+ # install all needed dependencies.
92
+ #Pipfile.lock
93
+
94
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow
95
+ __pypackages__/
96
+
97
+ # Celery stuff
98
+ celerybeat-schedule
99
+ celerybeat.pid
100
+
101
+ # SageMath parsed files
102
+ *.sage.py
103
+
104
+ # Environments
105
+ .env
106
+ .venv
107
+ env/
108
+ venv/
109
+ ENV/
110
+ env.bak/
111
+ venv.bak/
112
+
113
+ # Spyder project settings
114
+ .spyderproject
115
+ .spyproject
116
+
117
+ # Rope project settings
118
+ .ropeproject
119
+
120
+ # mkdocs documentation
121
+ /site
122
+
123
+ # mypy
124
+ .mypy_cache/
125
+ .dmypy.json
126
+ dmypy.json
127
+
128
+ # Pyre type checker
129
+ .pyre/
load_dataset.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
upload/upload_layer_frames.ipynb ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 62,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import numpy as np\n",
10
+ "import pickle\n",
11
+ "\n",
12
+ "from datasets import Dataset, Split"
13
+ ]
14
+ },
15
+ {
16
+ "cell_type": "code",
17
+ "execution_count": 63,
18
+ "metadata": {},
19
+ "outputs": [],
20
+ "source": [
21
+ "with open(\"../../NIST-In-Situ-IN625-LPBF-Overhangs/layer/base/1.pkl\", \"rb\") as f:\n",
22
+ " layer = pickle.load(f)"
23
+ ]
24
+ },
25
+ {
26
+ "cell_type": "code",
27
+ "execution_count": 64,
28
+ "metadata": {},
29
+ "outputs": [
30
+ {
31
+ "name": "stdout",
32
+ "output_type": "stream",
33
+ "text": [
34
+ "build_time (3, 377)\n",
35
+ "build_time (377, 3)\n",
36
+ "raw_frame_number (1, 377)\n",
37
+ "raw_frame_number (377, 1)\n",
38
+ "resolution [[49.8]\n",
39
+ " [33.5]]\n",
40
+ "resolution [49.8 33.5]\n"
41
+ ]
42
+ }
43
+ ],
44
+ "source": [
45
+ "layer_transposed = {}\n",
46
+ "for key, value in layer.items():\n",
47
+ " if (key in [\"build_time\", \"raw_frame_number\"]):\n",
48
+ " print(key, value.shape)\n",
49
+ " value_transposed = value.transpose(1, 0)\n",
50
+ " print(key, value_transposed.shape)\n",
51
+ " if (key == \"raw_frame_number\"):\n",
52
+ " layer_transposed[key] = value_transposed.flatten()\n",
53
+ " else:\n",
54
+ " layer_transposed[key] = value_transposed\n",
55
+ " elif (key == \"resolution\"):\n",
56
+ " print(key, value)\n",
57
+ " value_flatten = value.flatten()\n",
58
+ " print(key, value_flatten)\n",
59
+ " layer_transposed[key] = value_flatten\n",
60
+ " else:\n",
61
+ " layer_transposed[key] = value\n"
62
+ ]
63
+ },
64
+ {
65
+ "cell_type": "code",
66
+ "execution_count": 65,
67
+ "metadata": {},
68
+ "outputs": [
69
+ {
70
+ "name": "stdout",
71
+ "output_type": "stream",
72
+ "text": [
73
+ "(377, 126, 360)\n",
74
+ "377\n"
75
+ ]
76
+ }
77
+ ],
78
+ "source": [
79
+ "frames = layer_transposed[\"radiant_temp\"]\n",
80
+ "print(frames.shape)\n",
81
+ "print(len(frames))"
82
+ ]
83
+ },
84
+ {
85
+ "cell_type": "code",
86
+ "execution_count": 66,
87
+ "metadata": {},
88
+ "outputs": [
89
+ {
90
+ "name": "stdout",
91
+ "output_type": "stream",
92
+ "text": [
93
+ "{'folder_layer_range': '001-005', 'part': 'OverhangPart', 'part_section': 'BASE', 'process': 'LPBFthermography', 'source': 'NIST', 'supports': 'N/A', 'layer_number': 1, 'build_time': array([0., 0., 0.], dtype=float32), 'contact_email': 'jarred.heigel@nist.gov', 'file_name': '20180801_OverhangStudy_Layer01.mat', 'hatch_spacing': 100, 'laser_power': 195, 'layer_thickness': 20, 'material': 'IN625', 'radiant_temp': array([[0, 0, 0, ..., 0, 0, 0],\n",
94
+ " [0, 0, 0, ..., 0, 0, 0],\n",
95
+ " [0, 0, 0, ..., 0, 0, 0],\n",
96
+ " ...,\n",
97
+ " [0, 0, 0, ..., 0, 0, 0],\n",
98
+ " [0, 0, 0, ..., 0, 0, 0],\n",
99
+ " [0, 0, 0, ..., 0, 0, 0]], dtype=uint16), 'raw_frame_number': 5024, 'resolution': array([49.8, 33.5], dtype=float32), 's_hvariable__a': 2.655, 's_hvariable__b': -800.7, 's_hvariable__c': 1940000.0, 'scan_speed': 800, 'website': 'nist.gov/el/lpbf-thermography/3D-part-builds/OverhangPart-IN625'}\n"
100
+ ]
101
+ }
102
+ ],
103
+ "source": [
104
+ "frames_list = []\n",
105
+ "for frame_index, frame in enumerate(frames):\n",
106
+ " frame_dict = {}\n",
107
+ " for key, value in layer_transposed.items():\n",
108
+ " if (key in [\"radiant_temp\", \"build_time\", \"raw_frame_number\"]):\n",
109
+ " frame_dict[key] = value[frame_index]\n",
110
+ " else:\n",
111
+ " frame_dict[key] = value\n",
112
+ " \n",
113
+ " frames_list.append(frame_dict)\n",
114
+ "\n",
115
+ "print(frames_list[0])"
116
+ ]
117
+ },
118
+ {
119
+ "cell_type": "code",
120
+ "execution_count": 67,
121
+ "metadata": {},
122
+ "outputs": [],
123
+ "source": [
124
+ "dataset = Dataset.from_list(frames_list)"
125
+ ]
126
+ },
127
+ {
128
+ "cell_type": "code",
129
+ "execution_count": 69,
130
+ "metadata": {},
131
+ "outputs": [
132
+ {
133
+ "name": "stderr",
134
+ "output_type": "stream",
135
+ "text": [
136
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1/1 [00:00<00:00, 1.45ba/s]\n",
137
+ "Uploading the dataset shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1/1 [00:01<00:00, 1.33s/it]\n"
138
+ ]
139
+ },
140
+ {
141
+ "data": {
142
+ "text/plain": [
143
+ "CommitInfo(commit_url='https://huggingface.co/datasets/ppak10/Melt-Pool-Thermal-Images/commit/7012f060899646abef1d05262df89ba69167e4b7', commit_message='Upload dataset', commit_description='', oid='7012f060899646abef1d05262df89ba69167e4b7', pr_url=None, pr_revision=None, pr_num=None)"
144
+ ]
145
+ },
146
+ "execution_count": 69,
147
+ "metadata": {},
148
+ "output_type": "execute_result"
149
+ }
150
+ ],
151
+ "source": [
152
+ "dataset.push_to_hub(\n",
153
+ " \"ppak10/Melt-Pool-Thermal-Images\",\n",
154
+ " config_name = \"nist_overhangs_layer_1\",\n",
155
+ ")"
156
+ ]
157
+ },
158
+ {
159
+ "cell_type": "code",
160
+ "execution_count": null,
161
+ "metadata": {},
162
+ "outputs": [],
163
+ "source": [
164
+ "print(layer)"
165
+ ]
166
+ },
167
+ {
168
+ "cell_type": "code",
169
+ "execution_count": null,
170
+ "metadata": {},
171
+ "outputs": [],
172
+ "source": []
173
+ }
174
+ ],
175
+ "metadata": {
176
+ "kernelspec": {
177
+ "display_name": "venv",
178
+ "language": "python",
179
+ "name": "python3"
180
+ },
181
+ "language_info": {
182
+ "codemirror_mode": {
183
+ "name": "ipython",
184
+ "version": 3
185
+ },
186
+ "file_extension": ".py",
187
+ "mimetype": "text/x-python",
188
+ "name": "python",
189
+ "nbconvert_exporter": "python",
190
+ "pygments_lexer": "ipython3",
191
+ "version": "3.12.3"
192
+ }
193
+ },
194
+ "nbformat": 4,
195
+ "nbformat_minor": 2
196
+ }
upload/upload_part_section_frames.ipynb ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 1,
6
+ "metadata": {},
7
+ "outputs": [
8
+ {
9
+ "name": "stderr",
10
+ "output_type": "stream",
11
+ "text": [
12
+ "/media/ppak/Storage/HuggingFace/Datasets/Melt-Pool-Thermal-Images/venv/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
13
+ " from .autonotebook import tqdm as notebook_tqdm\n"
14
+ ]
15
+ }
16
+ ],
17
+ "source": [
18
+ "import numpy as np\n",
19
+ "import os\n",
20
+ "import pickle\n",
21
+ "import re\n",
22
+ "\n",
23
+ "from datasets import Dataset, concatenate_datasets\n",
24
+ "from tqdm import tqdm"
25
+ ]
26
+ },
27
+ {
28
+ "cell_type": "code",
29
+ "execution_count": 2,
30
+ "metadata": {},
31
+ "outputs": [],
32
+ "source": [
33
+ "data_dir = \"../../NIST-In-Situ-IN625-LPBF-Overhangs/layer/base/\""
34
+ ]
35
+ },
36
+ {
37
+ "cell_type": "code",
38
+ "execution_count": 3,
39
+ "metadata": {},
40
+ "outputs": [],
41
+ "source": [
42
+ "def numerical_sort(value):\n",
43
+ " # Extract numerical part from the string\n",
44
+ " numbers = re.compile(r'(\\d+)')\n",
45
+ " parts = numbers.split(value)\n",
46
+ " parts[1::2] = map(int, parts[1::2])\n",
47
+ " return parts"
48
+ ]
49
+ },
50
+ {
51
+ "cell_type": "code",
52
+ "execution_count": 4,
53
+ "metadata": {},
54
+ "outputs": [
55
+ {
56
+ "name": "stderr",
57
+ "output_type": "stream",
58
+ "text": [
59
+ "100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 99/99 [03:09<00:00, 1.91s/it]\n"
60
+ ]
61
+ }
62
+ ],
63
+ "source": [
64
+ "dataset = None\n",
65
+ "layer_frames_list = []\n",
66
+ "# for layer_file in sorted(os.listdir(data_dir), key=numerical_sort)[0:2]:\n",
67
+ "for layer_file in tqdm(sorted(os.listdir(data_dir), key=numerical_sort)):\n",
68
+ " with open(f\"{data_dir}/{layer_file}\", \"rb\") as f:\n",
69
+ " layer = pickle.load(f)\n",
70
+ "\n",
71
+ " # Transpose specific layer values\n",
72
+ " layer_transposed = {}\n",
73
+ " for key, value in layer.items():\n",
74
+ " if (key in [\"build_time\", \"raw_frame_number\"]):\n",
75
+ " # print(key, value.shape)\n",
76
+ " value_transposed = value.transpose(1, 0)\n",
77
+ " # print(key, value_transposed.shape)\n",
78
+ " if (key == \"raw_frame_number\"):\n",
79
+ " layer_transposed[key] = value_transposed.flatten()\n",
80
+ " else:\n",
81
+ " layer_transposed[key] = value_transposed\n",
82
+ " elif (key == \"resolution\"):\n",
83
+ " # print(key, value)\n",
84
+ " value_flatten = value.flatten()\n",
85
+ " # print(key, value_flatten)\n",
86
+ " layer_transposed[key] = value_flatten\n",
87
+ " else:\n",
88
+ " layer_transposed[key] = value\n",
89
+ "\n",
90
+ " frames_list = []\n",
91
+ " for frame_index, frame in enumerate(layer_transposed[\"radiant_temp\"]):\n",
92
+ " frame_dict = {}\n",
93
+ " frame_dict[\"frame_index\"] = frame_index\n",
94
+ " for key, value in layer_transposed.items():\n",
95
+ " if (key in [\"radiant_temp\", \"build_time\", \"raw_frame_number\"]):\n",
96
+ " frame_dict[key] = value[frame_index]\n",
97
+ " else:\n",
98
+ " frame_dict[key] = value\n",
99
+ " \n",
100
+ " frames_list.append(frame_dict)\n",
101
+ " \n",
102
+ " layer_dataset = Dataset.from_list(frames_list)\n",
103
+ " if dataset == None:\n",
104
+ " dataset = layer_dataset\n",
105
+ " else:\n",
106
+ " dataset = concatenate_datasets([dataset, layer_dataset])\n",
107
+ "\n",
108
+ " # layer_frames_list += frames_list"
109
+ ]
110
+ },
111
+ {
112
+ "cell_type": "code",
113
+ "execution_count": 5,
114
+ "metadata": {},
115
+ "outputs": [
116
+ {
117
+ "name": "stderr",
118
+ "output_type": "stream",
119
+ "text": [
120
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:07<00:00, 1.25s/ba]\n",
121
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:07<00:00, 1.18s/ba]\n",
122
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:07<00:00, 1.25s/ba]\n",
123
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:07<00:00, 1.30s/ba]\n",
124
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:08<00:00, 1.34s/ba]\n",
125
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:06<00:00, 1.10s/ba]\n",
126
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:09<00:00, 1.52s/ba]\n",
127
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:07<00:00, 1.32s/ba]\n",
128
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:06<00:00, 1.03s/ba]\n",
129
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:06<00:00, 1.04s/ba]\n",
130
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:07<00:00, 1.25s/ba]\n",
131
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:07<00:00, 1.22s/ba]\n",
132
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:08<00:00, 1.45s/ba]\n",
133
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:10<00:00, 1.71s/ba]\n",
134
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:07<00:00, 1.17s/ba]\n",
135
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:08<00:00, 1.37s/ba]\n",
136
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:07<00:00, 1.26s/ba]\n",
137
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:08<00:00, 1.46s/ba]\n",
138
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:06<00:00, 1.08s/ba]\n",
139
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:07<00:00, 1.32s/ba]\n",
140
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:09<00:00, 1.61s/ba]\n",
141
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:08<00:00, 1.37s/ba]\n",
142
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:07<00:00, 1.28s/ba]\n",
143
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:08<00:00, 1.43s/ba]\n",
144
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:09<00:00, 1.65s/ba]\n",
145
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:08<00:00, 1.49s/ba]\n",
146
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:09<00:00, 1.57s/ba]\n",
147
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:06<00:00, 1.12s/ba]\n",
148
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:07<00:00, 1.25s/ba]\n",
149
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:07<00:00, 1.31s/ba]\n",
150
+ "Creating parquet from Arrow format: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6/6 [00:07<00:00, 1.18s/ba]\n",
151
+ "Uploading the dataset shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 31/31 [05:00<00:00, 9.70s/it]\n"
152
+ ]
153
+ },
154
+ {
155
+ "data": {
156
+ "text/plain": [
157
+ "CommitInfo(commit_url='https://huggingface.co/datasets/ppak10/Melt-Pool-Thermal-Images/commit/3252ef78aceb07c7bbea05c43eda0f5c7070f869', commit_message='Upload dataset', commit_description='', oid='3252ef78aceb07c7bbea05c43eda0f5c7070f869', pr_url=None, pr_revision=None, pr_num=None)"
158
+ ]
159
+ },
160
+ "execution_count": 5,
161
+ "metadata": {},
162
+ "output_type": "execute_result"
163
+ }
164
+ ],
165
+ "source": [
166
+ "dataset.push_to_hub(\n",
167
+ " \"ppak10/Melt-Pool-Thermal-Images\",\n",
168
+ " config_name = \"nist_overhangs_base_frame_data\",\n",
169
+ ")"
170
+ ]
171
+ },
172
+ {
173
+ "cell_type": "code",
174
+ "execution_count": null,
175
+ "metadata": {},
176
+ "outputs": [],
177
+ "source": []
178
+ }
179
+ ],
180
+ "metadata": {
181
+ "kernelspec": {
182
+ "display_name": "venv",
183
+ "language": "python",
184
+ "name": "python3"
185
+ },
186
+ "language_info": {
187
+ "codemirror_mode": {
188
+ "name": "ipython",
189
+ "version": 3
190
+ },
191
+ "file_extension": ".py",
192
+ "mimetype": "text/x-python",
193
+ "name": "python",
194
+ "nbconvert_exporter": "python",
195
+ "pygments_lexer": "ipython3",
196
+ "version": "3.12.3"
197
+ }
198
+ },
199
+ "nbformat": 4,
200
+ "nbformat_minor": 2
201
+ }