import toml from collections import Counter import srsly import typer from sklearn.model_selection import train_test_split from pathlib import Path def count_labels(data): label_counter = Counter() for annotation in data: labels = [span['label'] for span in annotation['spans']] label_counter.update(labels) return label_counter def split_data(input_file: Path, train_ratio: float = 0.7, dev_ratio: float = 0.15, train_output: Path = Path("assets/train.jsonl"), dev_output: Path = Path("assets/dev.jsonl"), test_output: Path = Path("assets/test.jsonl"), random_state: int = 1): # Read data from JSONL data = list(srsly.read_jsonl(input_file)) # Split data test_ratio = 1 - train_ratio - dev_ratio train_data, temp_data = train_test_split(data, test_size=(dev_ratio + test_ratio), random_state=random_state) dev_data, test_data = train_test_split(temp_data, test_size=test_ratio/(dev_ratio + test_ratio), random_state=random_state) # Count labels in each dataset train_labels = count_labels(train_data) dev_labels = count_labels(dev_data) test_labels = count_labels(test_data) # Write split data to JSONL files srsly.write_jsonl(train_output, train_data) srsly.write_jsonl(dev_output, dev_data) srsly.write_jsonl(test_output, test_data) # Combine label counts into a dictionary all_labels = sorted(set(train_labels.keys()) | set(dev_labels.keys()) | set(test_labels.keys())) annotations_data = {label: {'Train': train_labels.get(label, 0), 'Dev': dev_labels.get(label, 0), 'Test': test_labels.get(label, 0)} for label in all_labels} # Print the table print(f"{'Label':<20}{'Train':<10}{'Dev':<10}{'Test':<10}") for label in all_labels: print(f"{label:<20}{train_labels.get(label, 0):<10}{dev_labels.get(label, 0):<10}{test_labels.get(label, 0):<10}") # Save the table in annotations.toml with open("annotations.toml", "w") as toml_file: toml.dump(annotations_data, toml_file) print("Annotations data saved in annotations.toml") if __name__ == "__main__": typer.run(split_data)