import srsly import typer import warnings from pathlib import Path import spacy from spacy.tokens import DocBin def convert(lang: str, input_paths: list[Path], output_dir: Path, spans_key: str = "sc"): nlp = spacy.blank(lang) nlp.add_pipe("sentencizer") # Ensure output directory exists output_dir.mkdir(parents=True, exist_ok=True) total_sentences = 0 # Process each input file for input_path in input_paths: print(f"Processing file: {input_path}") doc_bin = DocBin() for annotation in srsly.read_jsonl(input_path): text = annotation["text"] doc = nlp(text) # Process the document to split into sentences for sent in doc.sents: # Create a new Doc for the sentence sent_doc = nlp.make_doc(sent.text) spans = [] for item in annotation["spans"]: # Adjust span start and end for the sentence start = item["start"] - sent.start_char end = item["end"] - sent.start_char label = item["label"] # Only consider spans that are within the sentence if start >= 0 and end <= len(sent.text): span = sent_doc.char_span(start, end, label=label, alignment_mode="contract") if span is None: msg = f"Skipping entity [{start}, {end}, {label}] in the following text because the character span '{sent.text[start:end]}' does not align with token boundaries." warnings.warn(msg) else: spans.append(span) # Add sentence to DocBin only if it contains spans if spans: sent_doc.spans[spans_key] = spans doc_bin.add(sent_doc) total_sentences += 1 # Write to output file in the specified directory output_file = output_dir / f"{input_path.stem}.spacy" doc_bin.to_disk(output_file) print(f"Total sentences with spans: {total_sentences}") if __name__ == "__main__": typer.run(convert)