## Overview Original dataset [here](https://github.com/aylai/MultiPremiseEntailment). ## Dataset curation Same data and splits as the original. The following columns have been added: - `premise`: concatenation of `premise1`, `premise2`, `premise3`, and `premise4` - `label`: encoded `gold_label` with the following mapping `{"entailment": 0, "neutral": 1, "contradiction": 2}` ## Code to create the dataset ```python import pandas as pd from datasets import Features, Value, ClassLabel, Dataset, DatasetDict from pathlib import Path # read data path = Path("") datasets = {} for dataset_path in path.rglob("*.txt"): df = pd.read_csv(dataset_path, sep="\t") datasets[dataset_path.name.split("_")[1].split(".")[0]] = df ds = {} for name, df_ in datasets.items(): df = df_.copy() # fix parsing error for dev split if name == "dev": # fix parsing error df.loc[df["contradiction_judgments"] == "3 contradiction", "contradiction_judgments"] = 3 df.loc[df["gold_label"].isna(), "gold_label"] = "contradiction" # check no nan assert df.isna().sum().sum() == 0 # fix dtypes for col in ("entailment_judgments", "neutral_judgments", "contradiction_judgments"): df[col] = df[col].astype(int) # fix premise column for i in range(1, 4 + 1): df[f"premise{i}"] = df[f"premise{i}"].str.split("/", expand=True)[1] df["premise"] = df[[f"premise{i}" for i in range(1, 4 + 1)]].agg(" ".join, axis=1) # encode labels df["label"] = df["gold_label"].map({"entailment": 0, "neutral": 1, "contradiction": 2}) # cast to dataset features = Features({ "premise1": Value(dtype="string", id=None), "premise2": Value(dtype="string", id=None), "premise3": Value(dtype="string", id=None), "premise4": Value(dtype="string", id=None), "premise": Value(dtype="string", id=None), "hypothesis": Value(dtype="string", id=None), "entailment_judgments": Value(dtype="int32"), "neutral_judgments": Value(dtype="int32"), "contradiction_judgments": Value(dtype="int32"), "gold_label": Value(dtype="string"), "label": ClassLabel(num_classes=3, names=["entailment", "neutral", "contradiction"]), }) ds[name] = Dataset.from_pandas(df, features=features) # push to hub ds = DatasetDict(ds) ds.push_to_hub("mpe", token="") ```