Datasets:

Modalities:
Tabular
Text
Formats:
csv
ArXiv:
DOI:
Libraries:
Datasets
pandas
License:
iter
int64
0
7.65k
sample
stringclasses
1 value
H0_H1
stringclasses
2 values
Hi
stringclasses
27 values
n1
int64
20
1k
n2
int64
20
1k
perc
int64
0
50
real_perc1
float64
0
95
real_perc2
float64
0
95
Peto_test
float64
-7.97
10.1
Gehan_test
float64
-10.22
8.5
logrank_test
float64
-8.93
6.76
CoxMantel_test
float64
-9.17
7.03
BN_GPH_test
float64
0
109
BN_MCE_test
float64
0
143
BN_SCE_test
float64
0
114
Q_test
float64
-8.08
10.1
MAX_Value_test
float64
0
10.2
MIN3_test
float64
0
1
WLg_logrank_test
float64
0
84.2
WLg_TaroneWare_test
float64
0
99.4
WLg_Breslow_test
float64
0
106
WLg_PetoPrentice_test
float64
0
71.9
WLg_Prentice_test
float64
0
71.6
WKM_test
float64
-8.89
10.7
0
train
H0
H01
20
20
0
0
0
0.297551
-0.297551
-0.787612
-0.788933
1.840232
3.503853
1.554255
-0.788933
0.787612
0.320263
0.622416
0.225214
0.087665
1.168919
0.992588
0.301342
0
train
H1
H01
20
20
0
0
0
0.513952
-0.513952
-0.310338
-0.303021
0.188742
2.101485
0.364205
0.513952
0.513952
0.551612
0.091822
0.142393
0.263072
0.0032
0.022809
0.520499
0
train
H0
H01
30
30
0
0
0
0.177413
-0.177413
0.173177
0.170978
0.136924
3.775261
0.503774
0.177413
0.177413
0.286777
0.029233
0.00478
0.031407
0.279692
0.436632
0.17891
0
train
H1
H01
30
30
0
0
0
-0.162629
0.162629
1.069907
1.089918
4.989246
4.997123
4.839961
1.089918
1.069907
0.088923
1.187921
0.309793
0.026362
3.937977
3.753853
-0.164001
0
train
H0
H01
50
50
0
0
0
0.37916
-0.37916
-0.914703
-0.927406
2.662669
7.818048
1.855357
0.37916
0.914703
0.049926
0.860082
0.2589
0.143477
1.677242
1.474896
0.38107
0
train
H1
H01
50
50
0
0
0
0.565293
-0.565293
0.041903
0.041396
1.423335
1.335342
1.535772
0.565293
0.565293
0.463993
0.001714
0.107755
0.318733
0.478031
0.432948
0.568141
0
train
H0
H01
75
75
0
0
0
0.964114
-0.964114
-0.288415
-0.286881
1.69558
4.098083
2.226717
0.964114
0.964114
0.251066
0.082301
0.476434
0.92987
0.228385
0.279804
0.960873
0
train
H1
H01
75
75
0
0
0
2.065421
-2.065421
-1.58254
-1.578674
3.848608
4.701962
4.511193
2.065421
2.065421
0.039544
2.492212
3.456187
4.289995
0.439017
0.423629
2.058478
0
train
H0
H01
100
100
0
0
0
2.159956
-2.159956
-2.119579
-2.133984
4.977076
5.026849
4.934444
2.159956
2.159956
0.030359
4.553886
4.99028
4.689571
2.359734
2.423254
2.165376
0
train
H1
H01
100
100
0
0
0
1.959598
-1.959598
-1.190542
-1.184431
3.973202
5.865962
4.976259
1.959598
1.959598
0.04947
1.402876
2.70519
3.855503
0.012534
0.007767
1.964515
0
train
H0
H01
150
150
0
0
0
0.863895
-0.863895
-0.845699
-0.843646
0.750277
0.890997
0.780519
0.863895
0.863895
0.386853
0.711738
0.717475
0.745968
0.331242
0.381336
0.865338
0
train
H1
H01
150
150
0
0
0
1.212647
-1.212647
-1.699598
-1.713951
3.594532
5.237844
3.313002
-1.713951
1.699598
0.155187
2.937628
1.921175
1.470873
3.105898
2.982316
1.214673
0
train
H0
H01
200
200
0
0
0
1.130483
-1.130483
-1.220792
-1.219776
1.5307
1.679293
1.507572
-1.219776
1.220792
0.257677
1.487852
1.509154
1.277909
0.933933
0.899922
1.131899
0
train
H1
H01
200
200
0
0
0
-0.260348
0.260348
0.503254
0.502555
0.262266
3.890668
0.38136
0.502555
0.503254
0.273515
0.252561
0.250414
0.067778
0.38694
0.477453
-0.260674
0
train
H0
H01
300
300
0
0
0
-0.998546
0.998546
1.257883
1.258076
1.73387
2.597221
1.620809
-0.998546
1.257883
0.317611
1.582754
1.160427
0.996889
1.476485
1.415125
-0.999379
0
train
H1
H01
300
300
0
0
0
1.807274
-1.807274
-1.570993
-1.570808
3.260764
3.26832
3.268844
-1.570808
1.807274
0.070485
2.467439
3.075333
3.268852
0.831316
0.905388
1.808782
0
train
H0
H01
500
500
0
0
0
-0.414309
0.414309
0.867838
0.867829
1.205183
2.010545
1.223212
0.867829
0.867838
0.542479
0.753128
0.341843
0.171589
1.239592
1.309929
-0.414517
0
train
H1
H01
500
500
0
0
0
2.961699
-2.961699
-2.025371
-2.029771
6.69504
12.228367
10.026804
2.961699
2.961699
0.003045
4.119969
6.023191
8.795104
0.354162
0.330033
2.963181
0
train
H0
H01
1,000
1,000
0
0
0
-0.220008
0.220008
0.019275
0.01927
0.502928
1.530797
0.167129
0.01927
0.220008
0.675181
0.000371
0.054873
0.048394
0.032387
0.025087
-0.220063
0
train
H1
H01
1,000
1,000
0
0
0
2.599284
-2.599284
-0.745395
-0.74505
10.087342
15.935188
15.911598
2.599284
2.599284
0.000351
0.5551
3.052244
6.766085
1.563348
1.617375
2.599934
0
train
H0
H01
20
20
10
5
5
-0.803648
0.834155
-0.227265
-0.227779
5.844423
5.767766
5.747528
-0.803648
0.834155
0.056486
0.051883
0.165704
0.696034
2.296707
2.096198
-0.833031
0
train
H1
H01
20
20
10
15
10
-0.854567
0.86663
0.478485
0.468217
1.553334
2.389599
1.313583
-0.854567
0.86663
0.381338
0.219227
0.580792
0.746895
0.013202
0.000593
-0.875433
0
train
H0
H01
30
30
10
3.333333
20
1.385106
-1.393483
-0.951161
-0.950325
2.468493
2.847636
2.436157
1.385106
1.393483
0.154684
0.903118
1.621126
1.940468
0.045906
0.058
1.42318
0
train
H1
H01
30
30
10
16.666667
6.666667
-0.344814
0.300143
0.949477
0.949473
2.112193
2.178882
2.386384
-0.344814
0.949477
0.303252
0.901499
0.394413
0.09038
2.244038
2.225634
-0.32168
0
train
H0
H01
50
50
10
16
6
0.072932
-0.141537
0.755727
0.749626
3.769998
4.149782
3.480493
0.072932
0.755727
0.175477
0.561939
0.03036
0.019989
2.400511
2.144201
0.134531
0
train
H1
H01
50
50
10
22
16
0.720911
-0.767959
-0.490603
-0.489079
0.541709
2.622597
0.70775
0.720911
0.767959
0.43766
0.239198
0.393311
0.59045
0.000039
0.000625
0.77615
0
train
H0
H01
75
75
10
5.333333
8
-1.274065
1.270591
1.112131
1.11132
1.394227
3.394136
1.628833
-1.274065
1.270591
0.203373
1.235031
1.377534
1.61594
0.445386
0.38195
-1.272001
0
train
H1
H01
75
75
10
10.666667
6.666667
-1.105811
1.088252
1.498018
1.500409
2.384104
3.118999
2.543874
1.500409
1.498018
0.274239
2.251227
1.813484
1.186464
2.558084
2.667369
-1.093352
0
train
H0
H01
100
100
10
6
6
-0.060556
0.059249
0.156148
0.15558
0.045673
0.477786
0.052446
0.15558
0.156148
0.923744
0.024205
0.01609
0.003505
0.058768
0.038843
-0.05978
0
train
H1
H01
100
100
10
7
12
1.219882
-1.191099
-1.602709
-1.615315
3.212383
5.182512
2.923262
-1.615315
1.602709
0.15891
2.609242
1.738051
1.417418
2.640368
2.519638
1.202653
0
train
H0
H01
150
150
10
6
14
1.532448
-1.54283
-1.253053
-1.25673
2.567139
2.653406
2.422411
-1.25673
1.54283
0.118444
1.57937
2.258574
2.381107
0.380908
0.409196
1.561336
0
train
H1
H01
150
150
10
10
8
0.874087
-0.905215
-0.302112
-0.302143
1.275032
4.605504
1.867345
0.874087
0.905215
0.20307
0.091291
0.380581
0.819865
0.187716
0.216119
0.912835
0
train
H0
H01
200
200
10
14
6.5
-1.856988
1.882828
1.550296
1.544774
3.07508
4.621068
3.512504
-1.856988
1.882828
0.057796
2.386327
3.05195
3.549483
0.586896
0.549903
-1.897242
0
train
H1
H01
200
200
10
12
7
0.04899
-0.085601
0.818681
0.817514
2.842662
3.76148
3.729655
0.04899
0.818681
0.154923
0.66833
0.132406
0.007332
2.580764
2.584691
0.084427
0
train
H0
H01
300
300
10
11
11.666667
-1.198386
1.21379
0.832049
0.830891
1.83572
1.918953
1.739714
-1.198386
1.21379
0.221637
0.69038
1.271525
1.47333
0.035625
0.039922
-1.222187
0
train
H1
H01
300
300
10
11
14.666667
3.669831
-3.714601
-2.825099
-2.833801
12.522063
20.144645
14.728514
3.669831
3.714601
0.000158
8.030431
11.177037
13.878206
1.432732
1.342919
3.747663
0
train
H0
H01
500
500
10
10.6
10.2
-0.049533
0.091513
-0.610215
-0.610002
1.855609
2.168215
2.118598
-0.610002
0.610215
0.346699
0.372102
0.040017
0.008373
1.410879
1.388317
-0.091702
0
train
H1
H01
500
500
10
11.6
9.6
1.381327
-1.444591
-0.290169
-0.289811
4.238691
7.73377
6.222161
1.381327
1.444591
0.044553
0.083991
0.822611
2.088389
0.990656
1.046019
1.456193
0
train
H0
H01
1,000
1,000
10
9.6
11.4
1.250728
-1.267598
-0.815954
-0.815618
1.958135
1.92318
2.011145
1.250728
1.267598
0.201757
0.665234
1.266142
1.606811
0.011333
0.011251
1.276562
0
train
H1
H01
1,000
1,000
10
10.3
10.8
3.757314
-3.85226
-1.746078
-1.746665
21.735629
24.390165
26.856193
3.757314
3.85226
0.000001
3.050838
8.849246
14.874501
0.759059
0.74599
3.88065
0
train
H0
H01
20
20
20
10
20
0.824175
-0.792447
-0.832959
-0.821327
0.845007
3.965367
0.704754
0.824175
0.832959
0.265228
0.674578
0.821805
0.626073
0.299302
0.518658
0.818786
0
train
H1
H01
20
20
20
20
25
1.77373
-1.789438
-1.307196
-1.318637
4.173654
4.262932
4.287604
1.77373
1.789438
0.070336
1.738805
2.609862
3.25083
0.09821
0.126405
1.809738
0
train
H0
H01
30
30
20
13.333333
13.333333
-1.045294
1.062471
1.071277
1.0787
1.167827
2.348465
1.186867
-1.045294
1.071277
0.28005
1.163593
1.162276
1.133013
0.845891
0.813085
-1.080206
0
train
H1
H01
30
30
20
33.333333
16.666667
0.769564
-0.792499
-0.504345
-0.512545
0.820746
3.716933
1.016548
0.769564
0.792499
0.293697
0.262702
0.404436
0.631524
0.01199
0.02454
0.815216
0
train
H0
H01
50
50
20
18
20
0.331941
-0.356299
-0.089421
-0.088673
0.399706
0.362346
0.421626
-0.088673
0.356299
0.721619
0.007863
0.064885
0.126574
0.100394
0.08158
0.356296
0
train
H1
H01
50
50
20
16
18
0.432225
-0.430155
-0.29474
-0.292758
0.15231
1.230955
0.253106
0.432225
0.430155
0.662052
0.085707
0.106174
0.184826
0.000198
0.000347
0.437082
0
train
H0
H01
75
75
20
26.666667
25.333333
1.480763
-1.528104
-1.032901
-1.035747
3.156837
3.586061
3.305425
1.480763
1.528104
0.122391
1.072771
1.768524
2.344566
0.011751
0.015472
1.544815
0
train
H1
H01
75
75
20
24
25.333333
0.747404
-0.657571
-0.999997
-1.005913
1.262669
1.277464
1.271278
-1.005913
0.999997
0.506275
1.01186
0.665575
0.432454
1.148028
1.133511
0.664649
0
train
H0
H01
100
100
20
22
23
0.455679
-0.519537
0.069876
0.069544
1.691867
1.851734
1.806817
0.455679
0.519537
0.405186
0.004836
0.078748
0.269604
0.651526
0.643417
0.523
0
train
H1
H01
100
100
20
22
25
0.520612
-0.546046
-0.218798
-0.217406
0.414032
1.478993
0.717062
0.520612
0.546046
0.578733
0.047265
0.115541
0.298177
0.079838
0.095544
0.555237
0
train
H0
H01
150
150
20
20
31.333333
2.285759
-2.294352
-2.094886
-2.094429
5.338086
5.42237
5.251095
-2.094429
2.294352
0.020105
4.386632
5.293061
5.279468
1.711253
1.794979
2.324376
0
train
H1
H01
150
150
20
24.666667
21.333333
-0.237685
0.151247
0.697763
0.697388
1.192507
1.510661
1.571595
-0.237685
0.697763
0.455756
0.48635
0.221963
0.022902
1.302549
1.222048
-0.156639
0
train
H0
H01
200
200
20
20.5
21
0.335253
-0.401659
0.25308
0.252943
2.652354
4.403275
2.100223
0.252943
0.401659
0.221082
0.06398
0.051369
0.16122
0.920294
0.864626
0.407692
0
train
H1
H01
200
200
20
21
20
2.749608
-2.737033
-2.317499
-2.346261
7.324129
8.332189
7.845022
2.749608
2.737033
0.005528
5.504939
6.708565
7.528505
1.49635
1.477055
2.774547
0
train
H0
H01
300
300
20
25
19.666667
-1.368661
1.349631
1.453353
1.451429
2.114027
2.994807
2.116314
-1.368661
1.453353
0.168605
2.106646
1.799454
1.821571
1.454967
1.430591
-1.3767
0
train
H1
H01
300
300
20
21
18.333333
1.777565
-1.90831
-0.651661
-0.651014
7.847443
10.190463
8.931223
1.777565
1.90831
0.011498
0.42382
1.9705
3.647
0.808495
0.816092
1.935888
0
train
H0
H01
500
500
20
19.4
18.2
-1.844477
1.824736
1.762045
1.765036
3.772777
5.890243
3.444843
-1.844477
1.824736
0.064718
3.115353
3.756669
3.332395
1.425462
1.523659
-1.847201
0
train
H1
H01
500
500
20
19.8
18.8
2.338764
-2.434977
-1.274999
-1.276134
9.570183
9.208714
10.040713
2.338764
2.434977
0.006602
1.628518
4.067596
5.941023
0.132245
0.122116
2.465979
0
train
H0
H01
1,000
1,000
20
18.4
19.1
1.653914
-1.667306
-1.27915
-1.279634
3.230276
3.80562
3.055585
1.653914
1.667306
0.091849
1.637462
2.483657
2.780034
0.22619
0.247617
1.685722
0
train
H1
H01
1,000
1,000
20
23.2
20.6
2.123324
-2.31799
-0.642739
-0.643066
13.041257
13.237005
15.27561
2.123324
2.31799
0.000482
0.413534
2.553699
5.380721
1.977338
1.925075
2.357471
0
train
H0
H01
20
20
30
30
45
0.407657
-0.265446
-0.755308
-0.741812
1.587526
1.814292
1.52868
-0.741812
0.755308
0.465641
0.550286
0.200475
0.06979
1.020614
0.900487
0.315759
0
train
H1
H01
20
20
30
30
35
1.098945
-1.289519
-0.394569
-0.390539
5.47958
5.659539
5.289003
-0.390539
1.289519
0.071041
0.152521
0.98001
1.665347
0.594141
0.397952
1.275541
0
train
H0
H01
30
30
30
26.666667
33.333333
1.248024
-1.363656
-0.829539
-0.835212
3.125383
4.233548
2.90171
1.248024
1.363656
0.163342
0.697578
1.500093
1.868149
0.00498
0.000586
1.393919
0
train
H1
H01
30
30
30
26.666667
33.333333
0.933412
-0.93641
-0.896393
-0.902476
0.831838
4.386144
0.8731
-0.902476
0.93641
0.222674
0.814464
0.757432
0.874268
0.313215
0.251958
0.977905
0
train
H0
H01
50
50
30
12
24
-0.008914
0.115572
-0.80164
-0.797437
3.854138
3.78784
4.04589
-0.797437
0.80164
0.132265
0.635906
0.073524
0.013332
2.497377
2.427664
-0.106022
0
train
H1
H01
50
50
30
38
24
0.539551
-0.683358
0.033857
0.03362
2.365282
2.356311
2.355011
0.539551
0.683358
0.308046
0.00113
0.208318
0.46743
0.854836
0.718598
0.697272
0
train
H0
H01
75
75
30
30.666667
26.666667
-1.256811
1.245083
1.118275
1.119873
1.583557
1.606149
1.610186
-1.256811
1.245083
0.204852
1.254117
1.470657
1.549969
0.479571
0.505506
-1.267848
0
train
H1
H01
75
75
30
36
32
1.487677
-1.582351
-1.124759
-1.147391
2.920789
3.531843
3.037666
-1.147391
1.582351
0.101078
1.316507
1.999613
2.506631
0.059392
0.057723
1.639649
0
train
H0
H01
100
100
30
30
37
0.853882
-0.775731
-1.081509
-1.075251
1.373759
1.356463
1.390693
-1.075251
1.081509
0.424033
1.156164
0.859437
0.601166
1.217827
1.211355
0.799445
0
train
H1
H01
100
100
30
36
23
-0.221138
0.067954
0.705305
0.702843
1.663794
4.630422
2.034658
0.702843
0.705305
0.200948
0.493988
0.159006
0.004616
1.726401
1.759971
-0.071006
0
train
H0
H01
150
150
30
36.666667
28
-1.074778
1.029137
1.214698
1.210914
1.514587
1.604294
1.503252
-1.074778
1.214698
0.289987
1.466312
1.251469
1.058312
1.393494
1.37973
-1.058149
0
train
H1
H01
150
150
30
23.333333
32.666667
1.32551
-1.182069
-1.787445
-1.793351
4.419992
5.51441
4.141883
-1.793351
1.787445
0.126067
3.216108
1.909378
1.397556
4.108235
4.078711
1.218822
0
train
H0
H01
200
200
30
25.5
25
1.090286
-1.174809
-0.667883
-0.667772
1.770602
2.740936
2.047558
1.090286
1.174809
0.232908
0.445919
0.927274
1.381341
0.013874
0.014541
1.1929
0
train
H1
H01
200
200
30
26
31.5
3.718015
-3.829487
-3.012151
-3.041385
14.577457
16.512133
15.465918
3.718015
3.829487
0.000089
9.250024
12.549546
14.793038
1.843675
1.88484
3.917808
0
train
H0
H01
300
300
30
29.333333
30.666667
-0.728133
0.844798
0.306988
0.306734
1.418064
3.174054
1.681226
-0.728133
0.844798
0.36556
0.094086
0.381593
0.713397
0.153153
0.176771
-0.860678
0
train
H1
H01
300
300
30
28.666667
25.666667
3.234561
-3.382965
-2.323376
-2.345086
12.370137
20.018904
13.99755
3.234561
3.382965
0.000168
5.499428
8.644374
11.536311
0.304443
0.289616
3.471008
0
train
H0
H01
500
500
30
30
32.2
1.081769
-1.134488
-0.798476
-0.797736
1.614276
1.633271
1.58824
1.081769
1.134488
0.247504
0.636383
1.068313
1.286987
0.022785
0.027696
1.156433
0
train
H1
H01
500
500
30
29.6
31.6
3.821389
-3.881264
-3.193785
-3.221225
14.774733
19.66381
15.942269
3.821389
3.881264
0.000072
10.376289
12.846617
15.127841
2.421045
2.430861
3.968673
0
train
H0
H01
1,000
1,000
30
31
31.2
-0.060423
0.057156
0.069228
0.069181
0.012648
0.506122
0.004926
-0.060423
0.069228
0.917544
0.004786
0.0007
0.003266
0.007628
0.005909
-0.058534
0
train
H1
H01
1,000
1,000
30
28.4
31.1
5.96303
-6.145509
-4.597427
-4.628103
40.997567
42.33373
42.921905
5.96303
6.145509
0
21.419336
31.669924
37.946179
2.747855
2.791906
6.291102
0
train
H0
H01
20
20
40
50
30
-1.986289
1.954615
1.830505
1.863453
4.188969
5.839317
4.08458
-1.986289
1.954615
0.043957
3.472458
3.964774
3.872941
1.249406
1.512532
-2.0145
0
train
H1
H01
20
20
40
40
25
-0.048054
0.032411
-0.042355
-0.041987
0.109168
0.907981
0.074633
-0.041987
0.042355
0.823501
0.001763
0.002192
0.001041
0.000118
0.004811
-0.039598
0
train
H0
H01
30
30
40
40
43.333333
0.243445
-0.268707
-0.178829
-0.176696
0.061874
1.442812
0.091146
-0.176696
0.268707
0.695531
0.031221
0.038376
0.071752
0.019242
0.04028
0.299662
0
train
H1
H01
30
30
40
16.666667
46.666667
2.006477
-1.782034
-2.415713
-2.487463
8.468571
12.845458
8.19277
-2.487463
2.415713
0.004983
6.18747
4.252939
3.168865
7.838714
7.504559
1.82909
0
train
H0
H01
50
50
40
36
40
1.155198
-1.157645
-1.015396
-1.014224
1.31519
4.014844
1.434847
-1.014224
1.157645
0.234719
1.02865
1.117153
1.343163
0.198164
0.164395
1.188292
0
train
H1
H01
50
50
40
46
40
0.736143
-0.935641
-0.391806
-0.393093
2.000192
1.950276
1.999808
-0.393093
0.935641
0.33497
0.154522
0.551979
0.881154
0.1759
0.153559
0.964151
0
train
H0
H01
75
75
40
37.333333
33.333333
0.193052
-0.282876
0.002319
0.002312
0.294966
1.346982
0.373713
0.193052
0.282876
0.718008
0.000005
0.019015
0.08007
0.149342
0.178146
0.290936
0
train
H1
H01
75
75
40
36
41.333333
1.048222
-0.976854
-1.15953
-1.157057
1.377593
1.725894
1.356568
-1.157057
1.15953
0.313346
1.338781
1.038827
0.950655
0.944314
0.901768
1.008226
0
train
H0
H01
100
100
40
40
35
-0.272073
0.268015
0.233807
0.232673
0.086635
0.104832
0.08213
0.232673
0.268015
0.783942
0.054137
0.068741
0.07172
0.040821
0.036374
-0.274185
0
train
H1
H01
100
100
40
46
32
-0.172026
0.142872
0.277888
0.278845
0.119665
2.61963
0.175513
0.278845
0.277888
0.454059
0.077755
0.074936
0.02043
0.222506
0.246776
-0.151409
0
train
H0
H01
150
150
40
48
39.333333
-1.027352
0.908253
1.140545
1.138094
1.375021
1.659653
1.35797
1.138094
1.140545
0.350145
1.295258
0.992867
0.824218
1.363349
1.339973
-0.934308
0
train
H1
H01
150
150
40
39.333333
43.333333
2.473141
-2.719824
-1.846737
-1.865796
8.636487
14.535853
9.332607
-1.865796
2.719824
0.002259
3.481194
5.539445
7.422138
0.117772
0.108651
2.827525
0
train
H0
H01
200
200
40
39.5
42
0.009842
-0.050845
0.005465
0.005471
0.001151
0.620124
0.002631
0.005471
0.050845
0.89181
0.00003
0.000566
0.002584
0.006486
0.008035
0.050787
0
train
H1
H01
200
200
40
40.5
37.5
0.682409
-0.926684
-0.08553
-0.085376
3.070526
6.073317
3.652822
0.682409
0.926684
0.108097
0.007289
0.287587
0.859103
0.960259
0.993233
0.954372
0
train
H0
H01
300
300
40
39.666667
39.666667
-0.591453
0.619517
0.4215
0.420914
0.560674
0.584424
0.587417
-0.591453
0.619517
0.524334
0.177169
0.292318
0.38373
0.00325
0.003551
-0.636678
0
train
H1
H01
300
300
40
35
42.333333
4.104037
-4.138024
-3.655302
-3.692567
17.227196
19.350506
17.683843
4.104037
4.138024
0.000021
13.635053
15.948764
17.261125
4.462179
4.515193
4.250005
0
train
H0
H01
500
500
40
40.6
39.6
-0.136348
0.063744
0.200562
0.200433
0.110304
0.964665
0.073539
-0.136348
0.200562
0.809801
0.040173
0.004152
0.004063
0.081676
0.072838
-0.065329
0
train
H1
H01
500
500
40
39.4
38.2
2.206897
-2.259526
-1.941683
-1.952218
4.614704
8.348032
5.084353
-1.952218
2.259526
0.019046
3.811154
4.200542
5.119551
1.065405
1.053116
2.344626
0
train
H0
H01
1,000
1,000
40
40.3
39.1
-0.388839
0.371515
0.363059
0.363072
0.165
0.375743
0.151665
-0.388839
0.371515
0.702623
0.131821
0.161651
0.138004
0.061473
0.070642
-0.381783
0
train
H1
H01
1,000
1,000
40
39.3
39.1
4.100974
-4.780682
-2.062354
-2.065967
47.998175
55.070417
52.218613
4.100974
4.780682
0
4.26822
13.826907
22.921473
2.937615
2.911476
4.915471

Machine Learning for Two-Sample Testing under Right-Censored Data: A Simulation Study

The paper can be downloaded here.

About

This dataset is a supplement to the github repositiry and paper addressed to solve the two-sample problem under right-censored observations using Machine Learning. The problem statement can be formualted as H0: S1(t)=S2(t) versus H: S1(t)≠S_2(t) where S1(t) and S2(t) are survival functions of samples X1 and X2.

This dataset contains the synthetic data simulated by the Monte Carlo method and Inverse Transform Sampling.

Contents

Citing

@misc {petr_philonenko_2024,
    author       = { {Petr Philonenko} },
    title        = { ML_for_TwoSampleTesting (Revision a4ae672) },
    year         = 2024,
    url          = { https://huggingface.co/datasets/pfilonenko/ML_for_TwoSampleTesting },
    doi          = { 10.57967/hf/2978 },
    publisher    = { Hugging Face }
}

Repository

The files of this dataset have following structure:

data
├── 1_raw
│   └── two_sample_problem_dataset.tsv.gz    (121,986,000 rows)
├── 2_samples
│   ├── sample_train.tsv.gz                   (24,786,000 rows)
│   └── sample_simulation.tsv.gz              (97,200,000 rows)
└── 3_dataset_with_ML_pred
    └── dataset_with_ML_pred.tsv.gz           (97,200,000 rows)
  • two_sample_problem_dataset.tsv.gz is a raw simulated data. In the github repositiry, this file must be located in the ML_for_TwoSampleTesting/proposed_ml_for_two_sample_testing/data/1_raw/
  • sample_train.tsv.gz and sample_simulation.tsv.gz are train and test samples splited from the two_sample_problem_dataset.tsv.gz. In the github repositiry, these files must be located in the ML_for_TwoSampleTesting/proposed_ml_for_two_sample_testing/data/2_samples/
  • dataset_with_ML_pred.tsv.gz is the test sample supplemented by the predictions of the proposed ML-methods. In the github repositiry, this file must be located in the ML_for_TwoSampleTesting/proposed_ml_for_two_sample_testing/data/3_dataset_with_ML_pred/

Fields

In these files, there are following fields:

  1. PARAMETERS OF SAMPLE SIMULATION
  • iter is an iteration number of the Monte Carlo replication (in total, 37650);
  • sample is a type of the sample (train, val, test). This field is used to split dataset into train-validate-test samples for ML-model training;
  • H0_H1 is a true hypothesis: if H0, then samples X1 and X2 were simulated under S1(t)=S2(t); if H1, then samples X1 and X2 were simulated under S1(t)≠S2(t);
  • Hi is an alternative (H01-H09, H11-H19, or H21-H29) with competing hypotheses S1(t) and S2(t). Detailed description of these alternatives can be found in the paper;
  • n1 is the size of the sample 1;
  • n2 is the size of the sample 2;
  • perc is a set (expected) censoring rate for the samples 1 and 2;
  • real_perc1 is an actual censoring rate of the sample 1;
  • real_perc2 is an actual censoring rate of the sample 2;
  1. STATISTICS OF CLASSICAL TWO-SAMPLE TESTS
  • Peto_test is a statistic of the Peto and Peto’s Generalized Wilcoxon test (which is computed on two samples under parameters described above);
  • Gehan_test is a statistic of the Gehan’s Generalized Wilcoxon test;
  • logrank_test is a statistic of the logrank test;
  • CoxMantel_test is a statistic of the Cox-Mantel test;
  • BN_GPH_test is a statistic of the Bagdonavičius-Nikulin test (Generalized PH model);
  • BN_MCE_test is a statistic of the Bagdonavičius-Nikulin test (Multiple Crossing-Effect model);
  • BN_SCE_test is a statistic of the Bagdonavičius-Nikulin test (Single Crossing-Effect model);
  • Q_test is a statistic of the Q-test;
  • MAX_Value_test is a statistic of the Maximum Value test;
  • MIN3_test is a statistic of the MIN3 test;
  • WLg_logrank_test is a statistic of the Weighted Logrank test (weighted function: 'logrank');
  • WLg_TaroneWare_test is a statistic of the Weighted Logrank test (weighted function: 'Tarone-Ware');
  • WLg_Breslow_test is a statistic of the Weighted Logrank test (weighted function: 'Breslow');
  • WLg_PetoPrentice_test is a statistic of the Weighted Logrank test (weighted function: 'Peto-Prentice');
  • WLg_Prentice_test is a statistic of the Weighted Logrank test (weighted function: 'Prentice');
  • WKM_test is a statistic of the Weighted Kaplan-Meier test;
  1. STATISTICS OF THE PROPOSED ML-METHODS FOR TWO-SAMPLE PROBLEM
  • CatBoost_test is a statistic of the proposed ML-method based on the CatBoost framework;
  • XGBoost_test is a statistic of the proposed ML-method based on the XGBoost framework;
  • LightAutoML_test is a statistic of the proposed ML-method based on the LightAutoML (LAMA) framework;
  • SKLEARN_RF_test is a statistic of the proposed ML-method based on Random Forest (implemented in sklearn);
  • SKLEARN_LogReg_test is a statistic of the proposed ML-method based on Logistic Regression (implemented in sklearn);
  • SKLEARN_GB_test is a statistic of the proposed ML-method based on Gradient Boosting Machine (implemented in sklearn).

Simulation

For this dataset, the full source code (C++) is available here. It makes possible to reproduce and extend the simulation by the Monte Carlo method. Here, we present two fragments of the source code (main.cpp and simulation_for_machine_learning.h) which can help to understand the main steps of the simulation process.

main.cpp

#include"simulation_for_machine_learning.h"

// Select two-sample tests
vector<HomogeneityTest*> AllTests()
{
    vector<HomogeneityTest*> D;
    
    // ---- Classical Two-Sample tests for Uncensored Case ----
    //D.push_back( new HT_AndersonDarlingPetitt );
    //D.push_back( new HT_KolmogorovSmirnovTest );
    //D.push_back( new HT_LehmannRosenblatt );
    
    // ---- Two-Sample tests for Right-Censored Case ----
    D.push_back( new HT_Peto );
    D.push_back( new HT_Gehan );
    D.push_back( new HT_Logrank );
    
    D.push_back( new HT_BagdonaviciusNikulinGeneralizedCox );
    D.push_back( new HT_BagdonaviciusNikulinMultiple );
    D.push_back( new HT_BagdonaviciusNikulinSingle );

    D.push_back( new HT_QTest );			//Q-test
    D.push_back( new HT_MAX );				//Maximum Value test
    D.push_back( new HT_SynthesisTest );	//MIN3 test
    
    D.push_back( new HT_WeightedLogrank("logrank") );
    D.push_back( new HT_WeightedLogrank("Tarone–Ware") );
    D.push_back( new HT_WeightedLogrank("Breslow") );
    D.push_back( new HT_WeightedLogrank("Peto–Prentice") );
    D.push_back( new HT_WeightedLogrank("Prentice") );
    
    D.push_back( new HT_WeightedKaplanMeyer );
        
    return D;
}

// Example of two-sample testing using this code
void EXAMPLE_1(vector<HomogeneityTest*> &D)
{
    // load the samples
    Sample T1(".//samples//1Chemotherapy.txt");
    Sample T2(".//samples//2Radiotherapy.txt");

    // two-sample testing through selected tests
    for(int j=0; j<D.size(); j++)
    {
        char test_name[512];
        D[j]->TitleTest(test_name);
        

        double Sn = D[j]->CalculateStatistic(T1, T2);
        double pvalue = D[j]->p_value(T1, T2, 27000);  // 27k in accodring to the Kolmogorov's theorem => simulation error MAX||G(S|H0)-Gn(S|H0)|| <= 0.01

        printf("%s\n", &test_name);
        printf("\t Sn: %lf\n", Sn);
        printf("\t pv: %lf\n", pvalue);
        printf("--------------------------------");
    }
}

// Example of the dataset simulation for the proposed ML-method
void EXAMPLE_2(vector<HomogeneityTest*> &D)
{
    // Run dataset (train or test sample) simulation (results in ".//to_machine_learning_2024//")
    simulation_for_machine_learning sm(D);
}

// init point
int main()
{
    // Set the number of threads
    int k = omp_get_max_threads() - 1;
    omp_set_num_threads( k );

    // Select two-sample tests
    auto D = AllTests();
    
    // Example of two-sample testing using this code
    EXAMPLE_1(D);

    // Example of the dataset simulation for the proposed ML-method
    EXAMPLE_2(D);

    // Freeing memory
    ClearMemory(D);
    
    printf("The mission is completed.\n");
    return 0;
}

simulation_for_machine_learning.h

#ifndef simulation_for_machine_learning_H
#define simulation_for_machine_learning_H

#include"HelpFucntions.h"

// Object of the data simulation for training of the proposed ML-method
class simulation_for_machine_learning{
    private:
        // p-value computation using the Test and Test Statistic (Sn)
        double pvalue(double Sn, HomogeneityTest* Test)
        {
            auto f = Test->F( Sn );
            double pv = 0;
            if( Test->TestType().c_str() == "right" )
                pv = 1.0 - f;
            else
                if( Test->TestType().c_str() == "left" )
                    pv = f;
                else    // "double"
                    pv = 2.0*min( f, 1-f );
            return pv;
        }

        // Process of simulation
        void Simulation(int iter, vector<HomogeneityTest*> &D, int rank, mt19937boost Gw)
        {
            // preparation the file to save
            char file_to_save[512];
            sprintf(file_to_save,".//to_machine_learning_2024//to_machine_learning[rank=%d].csv", rank);

            // if it is the first iteration, the head of the table must be read
            if( iter == 0 )
            {
                FILE *ou = fopen(file_to_save,"w");
                fprintf(ou, "num;H0/H1;model;n1;n2;perc;real_perc1;real_perc2;");
                for(int i=0; i<D.size(); i++)
                {
                    char title_of_test[512];
                    D[i]->TitleTest(title_of_test);
                    fprintf(ou, "Sn [%s];p-value [%s];", title_of_test, title_of_test);
                }
                fprintf(ou, "\n");
                fclose(ou);
            }

            // Getting list of the Alternative Hypotheses (H01 - H27)
            vector<int> H;
            int l = 1;
            for(int i=100; i<940; i+=100)			// Groups of Alternative Hypotheses (I, II, III, IV, V, VI, VII, VIII, IX)
            {
                for(int j=10; j<40; j+=10)			// Alternative Hypotheses in the Group (e.g., H01, H02, H03 into the I and so on)
                    //for(int l=1; l<4; l++)		// various families of distribution of censoring time F^C(t)
                        H.push_back( 1000+i+j+l );
            }

            // Sample sizes
            vector<int> sample_sizes;
            sample_sizes.push_back( 20 );	// n1 = n2 = 20
            sample_sizes.push_back( 30 );	// n1 = n2 = 30
            sample_sizes.push_back( 50 );	// n1 = n2 = 50
            sample_sizes.push_back( 75 );	// n1 = n2 = 75
            sample_sizes.push_back( 100 );	// n1 = n2 = 100
            sample_sizes.push_back( 150 );	// n1 = n2 = 150
            sample_sizes.push_back( 200 );	// n1 = n2 = 200
            sample_sizes.push_back( 300 );	// n1 = n2 = 300
            sample_sizes.push_back( 500 );	// n1 = n2 = 500
            sample_sizes.push_back( 1000 );	// n1 = n2 = 1000

            // Simulation (Getting H, Simulation samples, Computation of the test statistics & Save to file)
            for(int i = 0; i<H.size(); i++)
            {
                int Hyp = H[i];
        
                if(rank == 0)
                    printf("\tH = %d\n",Hyp);

                for(int per = 0; per<51; per+=10)
                {
                    // ---- Getting Hi ----
                    AlternativeHypotheses H0_1(Hyp,1,0), H0_2(Hyp,2,0);
                    AlternativeHypotheses H1_1(Hyp,1,per), H1_2(Hyp,2,per);

                    for(int jj=0; jj<sample_sizes.size(); jj++)
                    {
                        int n = sample_sizes[jj];

                        // ---- Simulation samples ----
                        //competing hypothesis H0
                        Sample A0(*H0_1.D,n,Gw);
                        Sample B0(*H0_1.D,n,Gw);
                        if( per > 0 )
                        {
                            A0.CensoredTypeThird(*H1_1.D,Gw);
                            B0.CensoredTypeThird(*H1_1.D,Gw);
                        }

                        //competing hypothesis H1
                        Sample A1(*H0_1.D,n,Gw);
                        Sample B1(*H0_2.D,n,Gw);
                        if( per > 0 )
                        {
                            A1.CensoredTypeThird(*H1_1.D,Gw);
                            B1.CensoredTypeThird(*H1_2.D,Gw);
                        }

                        // ---- Computation of the test statistics & Save to file ----
                        //Sn and p-value computation under H0
                        FILE *ou = fopen(file_to_save, "a");
                        auto perc1 = A0.RealCensoredPercent();
                        auto perc2 = B0.RealCensoredPercent();
                        fprintf(ou,"%d;", iter);
                        fprintf(ou,"H0;");
                        fprintf(ou,"%d;", Hyp);
                        fprintf(ou,"%d;%d;", n,n);
                        fprintf(ou,"%d;%lf;%lf", per, perc1, perc2);
                        for(int j=0; j<D.size(); j++)
                        {
                            auto Sn_H0 = D[j]->CalculateStatistic(A0, B0);
                            auto pv_H0 = 0.0;	// skip computation (it prepares in ML-framework)
                            fprintf(ou, ";%lf;0", Sn_H0);
                        }
                        fprintf(ou, "\n");

                        //Sn and p-value computation under H1
                        perc1 = A1.RealCensoredPercent();
                        perc2 = B1.RealCensoredPercent();
                        fprintf(ou,"%d;", iter);
                        fprintf(ou,"H1;");
                        fprintf(ou,"%d;", Hyp);
                        fprintf(ou,"%d;%d;", n,n);
                        fprintf(ou,"%d;%lf;%lf", per, perc1, perc2);
                        for(int j=0; j<D.size(); j++)
                        {
                            auto Sn_H1 = D[j]->CalculateStatistic(A1, B1);
                            auto pv_H1 = 0.0;  // skip computation (it prepares in ML-framework)
                            fprintf(ou, ";%lf;0", Sn_H1);
                        }
                        fprintf(ou, "\n");
                        fclose( ou );
                    }
                }
            }
        }

    public:
        // Constructor of the class
        simulation_for_machine_learning(vector<HomogeneityTest*> &D)
        {
            int N = 37650;	// number of the Monte-Carlo replications
            #pragma omp parallel for
            for(int k=0; k<N; k++)
            {
                int rank = omp_get_thread_num();
                auto gen = GwMT19937[rank];
        
                if(rank == 0)
                    printf("\r%d", k);

                Simulation(k, D, rank, gen);
            }
        }
};

#endif
Downloads last month
35
Edit dataset card