File size: 4,927 Bytes
005e34f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ParsiNLU Persian reading comprehension task"""

from __future__ import absolute_import, division, print_function

import csv
import json

import datasets


logger = datasets.logging.get_logger(__name__)

_CITATION = """\
@article{huggingface:dataset,
    title = {ParsiNLU: A Suite of Language Understanding Challenges for Persian},
    authors = {Khashabi, Daniel and Cohan, Arman and Shakeri, Siamak and Hosseini, Pedram and Pezeshkpour, Pouya and Alikhani, Malihe and Aminnaseri, Moin and Bitaab, Marzieh and Brahman, Faeze and Ghazarian, Sarik and others},
    year={2020}
    journal = {arXiv e-prints},
    eprint = {2012.06154},    
}
"""

# You can copy an official description
_DESCRIPTION = """\
A Persian textual entailment task (deciding `sent1` entails `sent2`).     
"""

_HOMEPAGE = "https://github.com/persiannlp/parsinlu/"

_LICENSE = "CC BY-NC-SA 4.0"

_URL = "https://raw.githubusercontent.com/persiannlp/parsinlu/master/data/entailment/"
_URLs = {
    "train": _URL + "train.csv",
    "dev": _URL + "dev.csv",
    "test": _URL + "test.csv",
}


class ParsinluReadingComprehension(datasets.GeneratorBasedBuilder):
    """ParsiNLU Persian reading comprehension task."""

    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="parsinlu-repo", version=VERSION, description="ParsiNLU repository: query-paraphrasing"
        ),
    ]

    def _info(self):
        features = datasets.Features(
            {
                "sent1": datasets.Value("string"),
                "sent2": datasets.Value("string"),
                "category": datasets.Value("string"),
                "label": datasets.Value("string"),
            }
        )

        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        data_dir = dl_manager.download_and_extract(_URLs)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir["train"],
                    "split": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={"filepath": data_dir["test"], "split": "test"},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "filepath": data_dir["dev"],
                    "split": "dev",
                },
            ),
        ]

    def _generate_examples(self, filepath, split):
        logger.info("generating examples from = %s", filepath)

        with open(filepath, encoding="utf-8") as f:
            reader = csv.reader(f)

            for id_, row in enumerate(reader):
                if id_ == 0:
                    continue

                sent1 = row[1].replace("\t", "").replace("\n", "")
                sent2 = row[2].replace("\t", "").replace("\n", "")
                label = row[3].replace("\t", "").replace("\n", "")
                cat = row[4].replace("\t", "").replace("\n", "")
                yield id_, {
                    'sent1': sent1,
                    'sent2': sent2,
                    'label': label,
                    'category': cat,
                }