import torch import torch.utils.benchmark as benchmark import argparse from diffusers import DiffusionPipeline, LCMScheduler PROMPT = "close-up photography of old man standing in the rain at night, in a street lit by lamps, leica 35mm summilux" MODEL_ID = "stabilityai/stable-diffusion-xl-base-1.0" LORA_ID = "latent-consistency/lcm-lora-sdxl" def benchmark_fn(f, *args, **kwargs): t0 = benchmark.Timer( stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f} ) return t0.blocked_autorange().mean * 1e6 def load_pipeline(standard_sdxl=False): pipe = DiffusionPipeline.from_pretrained(MODEL_ID, variant="fp16") if not standard_sdxl: pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) pipe.load_lora_weights(LORA_ID) pipe.to(device="cuda", dtype=torch.float16) return pipe def call_pipeline(pipe, batch_size, num_inference_steps, guidance_scale): images = pipe( prompt=PROMPT, num_inference_steps=num_inference_steps, num_images_per_prompt=batch_size, guidance_scale=guidance_scale, ).images[0] if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--batch_size", type=int, default=1) parser.add_argument("--standard_sdxl", action="store_true") args = parser.parse_args() pipeline = load_pipeline(args.standard_sdxl) if args.standard_sdxl: num_inference_steps = 25 guidance_scale = 5 else: num_inference_steps = 4 guidance_scale = 1 time = benchmark_fn(call_pipeline, pipeline, args.batch_size, num_inference_steps, guidance_scale) print(f"Batch size: {args.batch_size} in {time/1e6:.3f} seconds")