# /// script # dependencies = ["trl>=0.12.0", "peft>=0.7.0", "trackio", "transformers>=4.40.0", "datasets>=2.18.0", "accelerate>=0.28.0"] # /// from datasets import load_dataset from peft import LoraConfig from trl import SFTTrainer, SFTConfig import trackio print("=" * 80) print("TEST RUN: Biomedical Llama Fine-Tuning (100 examples)") print("=" * 80) print("\n[1/4] Loading dataset...") dataset = load_dataset("panikos/biomedical-llama-training") # Use first 100 examples for test train_dataset = dataset["train"].select(range(100)) eval_dataset = dataset["validation"].select(range(20)) print(f" Train: {len(train_dataset)} examples") print(f" Eval: {len(eval_dataset)} examples") print("\n[2/4] Configuring LoRA...") lora_config = LoraConfig( r=16, lora_alpha=32, target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM" ) print(" LoRA rank: 16, alpha: 32") print("\n[3/4] Initializing trainer...") trainer = SFTTrainer( model="meta-llama/Llama-3.1-8B-Instruct", train_dataset=train_dataset, eval_dataset=eval_dataset, peft_config=lora_config, args=SFTConfig( output_dir="llama-biomedical-test", num_train_epochs=1, per_device_train_batch_size=1, # REDUCED from 2 to 1 gradient_accumulation_steps=8, # INCREASED from 4 to 8 learning_rate=2e-4, lr_scheduler_type="cosine", warmup_ratio=0.1, logging_steps=5, eval_strategy="steps", eval_steps=20, save_strategy="epoch", push_to_hub=True, hub_model_id="panikos/llama-biomedical-test", hub_private_repo=True, bf16=True, gradient_checkpointing=False, # DISABLED for stability report_to="trackio", project="biomedical-llama-training", run_name="test-run-100-examples-v3" ) ) print("\n[4/4] Starting training...") print(" Model: meta-llama/Llama-3.1-8B-Instruct") print(" Method: SFT with LoRA") print(" Epochs: 1") print(" Batch size: 1 x 8 = 8 (effective) - optimized for memory") print(" Gradient checkpointing: DISABLED") print() trainer.train() print("\n" + "=" * 80) print("Pushing model to Hub...") print("=" * 80) trainer.push_to_hub() print("\n" + "=" * 80) print("TEST COMPLETE!") print("=" * 80) print("\nModel: https://huggingface.co/panikos/llama-biomedical-test") print("Dashboard: https://panikos-trackio.hf.space/") print("Ready for full production training!")