MICROPROCESSORS AND MICROCONTROLLERS

DA-4

ADARSH SHIRAWALMATH - 22BKT0058

Aim:

- i.) Generate two wave forms with duty cycles 40% and 70% using interrupts.
- ii.) Generate a wave form with frequency 1 HZ and get data from P0 and sent to serial port.

Procedure:

- i.) Start up the Keil μ Vision Software.
- ii.) Create new μVision project at required directory.
- iii.) Set the device as 8051 microcontroller (AT89C51).
- iv.) Create new item at Source Group 1 in Target 1.
- v.) Set the file type as ASM file.
- vi.) Continue writing the code for the ALP.

vii.)Translate and build the file.

- viii.) Start debug session, and run code line by line to get output
- ix.) Check output at the memory location set, in memory 1.

Algorithm:

i.) Generate two wave forms with duty cycles 40% and 70% using interrupts.

1. Initialization:

- Set the program's starting address to 0000H.
- Jump to the main program (MAIN) using LJMP MAIN.
- Set up interrupt handlers for INT0 and INT1 at addresses 0003H and 0013H, respectively.
- 2. INTO Interrupt Handler (WAVE_40):
 - Call the **WAVE_40** subroutine when INT0 is triggered (**ACALL WAVE_40**).
 - Return from interrupt (RETI).
- 3. INT1 Interrupt Handler (WAVE_70):
 - Call the WAVE_70 subroutine when INT1 is triggered (ACALL WAVE_70).
 - Return from interrupt (**RETI**).
- 4. Main Program (MAIN):
 - Configure Timer 0 (TMOD) in mode 1 for 8-bit auto-reload.
 - Enable interrupts for INT0 and INT1 with specific priorities (INT1 70%, INT0 40%).
 - Enter an infinite loop (SJMP \$) to continuously monitor interrupts.

5. WAVE_40 Subroutine:

- Start a 40% duty cycle waveform on P2.3.
- Call the **ON_40** subroutine to handle the ON time.
- Turn off P2.3 using the **OFF_40** subroutine during the OFF time.
- Repeat the waveform generation until INT0 is triggered.
- Return from interrupt (**RETI**).

6. WAVE_70 Subroutine:

- Start a 70% duty cycle waveform on P2.3.
- Call the **ON_70** subroutine to handle the ON time.
- Turn off P2.3 using the **OFF_70** subroutine during the OFF time.
- Repeat the waveform generation until INT1 is triggered.
- Return from interrupt (RETI).

7. ON_40 Subroutine:

- Set Timer 0 for the ON time of the 40% duty cycle waveform.
- Start Timer 0 and wait until it overflows (JNB TF0, \$).

- Stop Timer 0 and clear its flag.
- Return from subroutine (**RET**).
- 8. OFF_40 Subroutine:
 - Set Timer 0 for the OFF time of the 40% duty cycle waveform.
 - Start Timer 0 and wait until it overflows (JNB TF0, \$).
 - Stop Timer 0 and clear its flag.
 - Return from subroutine (**RET**).
- 9. ON_70 Subroutine:
 - Similar to **ON_40** but for the 70% duty cycle waveform.
- 10. OFF_70 Subroutine:
 - Similar to **OFF_40** but for the 70% duty cycle waveform.
- 11. End of Program (END).

ii.) Generate a wave form with frequency 1 HZ and get data from P0 and sent to serial port.:-

- 1. Initialization:
 - Set program counter to address 0010H and jump to MAIN using LJMP MAIN.

2. INTO Interrupt Handler (WAVE):

- Call the WAVE subroutine when INTO is triggered at address 0003H (ACALL WAVE).
- Return from interrupt (**RETI**).
- 3. MAIN:
 - Configure Timer 0 (TMOD) in mode 2 (8-bit auto-reload) and Timer 1 for serial communication (**MOV TMOD**, **#20H**).
 - Set the serial control register (MOV SCON, #50H) and baud rate (MOV TH1, #-3).
 - Start Timer 1 (SETB TR1) and enable interrupts for INTO with a specific priority (MOV IE, #10000001B).
 - Set PO as an input port (MOV PO, #11111111B).

4. Serial Data Transmission:

- Continuously send data from P0 to the serial port register (SBUF) in a loop.
- Wait for transmission completion using the Transmit Interrupt (TI) flag.

5. WAVE Subroutine:

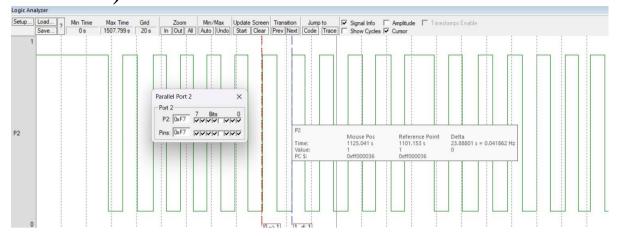
- Toggle P2.3 at a specific frequency determined by the **DELAY** subroutine.
- Repeat the waveform generation until INTO is triggered.
- Return from interrupt (**RETI**).
- 6. **DELAY Subroutine**:

- Set Timer 0 for a specific delay.
- Start Timer 0 and wait until it overflows (JNB TF0, \$).
- Stop Timer 0 and clear its flag.
- Return from subroutine (**RET**).
- 7. End of Program (END).

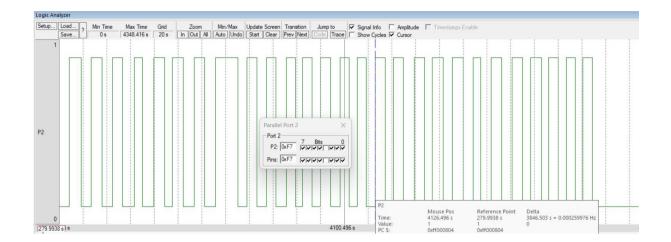
Code: a.)

1 ORG 0000H 2 LJMP MAIN 3 ORG 0003H 4 ACALL WAVE 40 5 RETI 6 ORG 0013H 7 ACALL WAVE 70 8 RETI 9 10 ORG 30H 11 MAIN: MOV TMOD, #01H 12 MOV IE, #10000101B 13 SJMP \$ 14 15 16 WAVE 40: 17 HERE40: 18 SETB P2.3 19 ACALL ON 40 20 CLR P2.3 21 ACALL OFF 40 22 JNB INTO, HERE40 23 RETI 24 25 WAVE 70: 26 HERE70: 27 SETB P2.3 28 ACALL ON 70 29 CLR P2.3 ACALL OFF 70 30 JNB INT1, HERE70 31 32 RETI

34	ON 40:	
35	MOV THO,	#OFFH
36	MOV TLO,	#00H
37	SETB TRO	
38	JNB TFO,	Ş
39	CLR TRO	
40	CLR TFO	
41	RET	
42	OFF 40:	
43	MOV THO,	#OFEH
44	MOV TLO,	#7BH
45	SETB TRO	
46	JNB TFO,	Ş
47	CLR TRO	
48	CLR TF0	
49	RET	
50	ON 70:	
51	MOV THO,	#OFFH
52	MOV TLO,	#00H
53	SETB TRO	
54	JNB TFO,	\$
55	CLR TRO	
56	CLR TFO	
57	RET	
58	OFF 70:	
59	MOV THO,	#OFFH
60	MOV TLO,	#97H
61	SETB TRO	
62	JNB TFO,	Ş
63	CLR TRO	
64	CLR TF0	
65	RET	
66	OVER: END	


b.)

1	ORG 0010H
2	LJMP MAIN
3	
4	ORG 0003H
5	ACALL WAVE
6	RETI
7	
8	ORG 0030H
9	MAIN:
10	MOV TMOD, #20H
11	MOV SCON, #50H
12	MOV TH1, #-3
13	SETB TR1
14	MOV IE, #10000001B
15	MOV P0, #1111111B
16	
17	
18	SEND:
19	MOV A, PO
20	CLR TI
21	MOV SBUF, A
22	JNB TI, ¢
23	SJMP SEND
24	
25	
26	WAVE:
27	HERE:
28	CPL P2.3
29	MOV R0, #3CH
30	DEL: ACALL DELAY
31	
32	JNB INTO, HERE
33	RETI


34	
35	DELAY:
36	MOV THO, #00H
37	MOV TLO, #00H
38	SETB TRO
39	JNB TFO, \$
40	CLR TRO
41	CLR TF0
42	RET
43	
44	OVER:
45	END

Output:

a.)

b.)

