MICROPROCESSORS AND MICROCONTROLLERS
 LAB

DA-3

Adarsh Shirawalmath - 22BKT0058

Aim:
i.) Write an 8051 ALP program to generate a pulse waveform with given duty cycle using timer.
ii.) Write an 8051 ALP program to generate a pulse waveform with given time-period using timer. $T=x x$ ms (Reg: 22BCE29xx)
iii.) Write an 8051 ALP to get the radius of sphere (8 -bit) from port P1. Calculate the volume (V) and total surface area (A). Send the following messages through UART1. "Volume of the sphere is V " "Total surface area is A "

Procedure:

i.) Start up the Keil μ Vision Software.
ii.) Create new μ Vision project at required directory.
iii.) Set the device as 8051 microcontroller (AT89C51).
iv.) Create new item at Source Group 1 in Target 1.
v.) Set the file type as ASM file.
vi.) Continue writing the code for the ALP.

vii.)Translate and build the file. viii.) Start debug session, and run code line by line to get output
 ix.) Check output at the memory location set, in memory 1.

Algorithm:

a.) To generate a pulse waveform with given duty cycle using timer:-

1. Set up Timer 0 in mode 1 with an external clock source.
2. Clear Timer 0 flag.
3. Enter an infinite loop: a. Set P2.3 high. b. Start Timer 0 with a delay determined by ON_DELAY subroutine. c. Clear P2.3. d. Start Timer 0 with a delay determined by OFF_DELAY subroutine.
ON_DELAY Subroutine:
4. Load Timer 0 with a delay for the LED ON time.
5. Start Timer 0 and wait until it overflows (TF0 flag is set).
6. Stop Timer 0 and clear its flag.

OFF_DELAY Subroutine:

1. Load Timer 0 with a delay for the LED OFF time.
2. Start Timer 0 and wait until it overflows (TF0 flag is set).
3. Stop Timer 0 and clear its flag.

b.) to generate a pulse waveform with given time-period using timer. T = xx
 ms (Reg: 22BCE29xx):-

1. Set up Timer 0 in mode 1
2. Use an external clock source.
3. Clear Timer 0 flag.
4. Enter an infinite loop: a. Set P2.3 high. b. Start Timer 0 with a delay determined by ON_DELAY subroutine. c. Clear P2.3. d. Start Timer 0 with a delay determined by OFF_DELAY subroutine.
ON_DELAY Subroutine:
5. Load Timer 0 with a delay for the LED ON time.
6. Start Timer 0 and wait until it overflows (TF0 flag is set).
7. Stop Timer 0 and clear its flag.

OFF_DELAY Subroutine:
8. Load Timer 0 with a delay for the LED OFF time.
9. Start Timer 0 and wait until it overflows (TFO flag is set).
10. Stop Timer 0 and clear its flag.

C.) to get the radius of sphere (8 -bit) from port P1.

 Calculate the volume (V) and total surface area (A):-1. Initialization:

- Move the value of Port 1 (P1) to Register 0 (R0).
- Copy R0 to Accumulator (A) and Register B.
- Initialize Register 1 (R1) for storing results.

2. Calculate Surface Area:

- Square the radius ($A^{*} B$) and multiply by a constant to get $4 \times 8 \times 824 \times \pi \times r 2$.
- Convert the result to ASCII and store it in memory.

3. Send Surface Area via Serial Port:

- Iterate through data array DAT0 and send data to the serial port.

4. Calculate Volume:

- Decrement the ASCII counter (R1) and recalculate the radius cubed.
- Multiply to get $43 \times 8 \times 8334 \times \pi \times r$.
- Convert the result to ASCII and store it in memory.

5. Send Volume via Serial Port:

- Iterate through data array DAT1 and send data to the serial port.

6. Data Definitions:

- Define data strings for surface area and volume messages.

7. End of Program.

Code:

a.) To generate a pulse waveform with given duty cycle using timer:-

```
MOV IMOD, #O1H
CLR IFO
HERE:
SETB P2.3
ACALI ON_DELAY
CLR P2.3
ACAIL OFF_DELAY
SJMP HERE
ON DELAY:
MOV IHO, #OEFH
MOV ILO, #OOH
SEIB IRO
TNB TFO, F
    CLR IRO
    CLR IFO
    REI
    OHE_DELAY=
    MOV IHO, #OEBH
    MOV ILO, #OE2H
    SETB IRO
        JNB IFO, F
            CLR IRO
            CLR IFO
            RET
                END
```

b.) to generate a pulse waveform with given time-period using timer. $\mathrm{T}=\mathrm{xx} \mathrm{ms}$ (Reg: 22BCE29xx):-

	1	MOV TMOD, \#01H
	2	CLR TEO
	3	
	4	HERE:
	5	SETB P2.3
	6	ACALL ON_DELAY
	7	CLR P2.3
	8	ACALL OFF_DELAY
	9	SJMP HERE
	10	
	11	ON_DELAY:
	12	MOV THO,\#OEFH
	13	MOV TLO, \#00H
	14	SETB TRO
	15	JNB TEO, \$
	16	CLR TR0
	17	CLR TFO
	18	RET
	19	
	20	OEF_DELAY:
	21	MOV THO, \#OESH
V	22	MOV TLO, \#OBAH
	23	SEIB TRO
	24	JNB TEO, ${ }^{\text {F }}$
	25	CLR TRO
	26	CLR TFO
	27	RET
	28	
	29	END
	30	

C.)

to get the radius of sphere (8-bit) from port P1. Calculate the volume (V) and total surface area (A):-

〉	29	DJNZ R3,AGAIN2
	30	
	31	AGAIN: MOV A,R1
	32	SUBB A, 401 H
	33	MOV R1, A
	34	MOV SBUF,@R1
	35	CHECK_I12: JNB TI,CHECK_T12
	36	CLR TI
	37	MOV A, R1
	38	CJNE A, $\ddagger 20$, AGAIN
	39	
	40	MOV A, RO
	41	MOV B, R0
	42	MUL AB
	43	MOV B, R0
	44	MUL AB
	45	MOV B, \#04H
	46	MUL AB
	47	MOV R1, $\ddagger 20 \mathrm{H}$
	48	
	49	CONVERI_TO_ASCII2:
	50	MOV B, \%10D
	51	DIV AB
	52	MOV A, B
	53	ADD A, \#30H
	54	MOV @R1, A
	55	INC R1
	56	MOV A, R7

57	CJNE A, $\ddagger 0$, CONVERI_TO_ASCII2
58	
59	MOV R3, \#26D
60	MOV R2, \#0
61	MOV DPTR, \#DAT1
62	AGAIN3:MOV A,R2
63	MOVC A, @A +DPTR
64	MOV SBUF, A
65	CHECK_III:JNB II, CHECK_TII
66	CLR TI
67	INC R2
68	DJNZ R3, AGAIN3
69	
70	AGAIN4:MOV A,R1
71	SUBB A, \#01H
72	MOV R1, A
73	MOV SBUF, @RI
74	CHECK_II3: JNB II, CHECK_TI3
75	CLR TI
76	MOV A, R1
77	CJNE A, $420 \mathrm{H}, \mathrm{AGAIN} 4$
78	
79	DAIO: DB "TOTAL SURFACE AREA IS", 0
80	
81	DAT1: DB "VOLUME OF THE SPHERE IS", 0
82	
83	END

Output:

a.)

b.)

C.)

UART \#1

TOTAL SURFACE AREA IS 14

