--- license: cc-by-sa-4.0 dataset_info: features: - name: video_id dtype: string - name: chunk_idx dtype: int64 - name: chunk_text dtype: string - name: video_metadata dtype: string - name: video_language dtype: string - name: chunk_media dtype: string splits: - name: shard_10339 num_bytes: 1997009 num_examples: 631 - name: shard_10400 num_bytes: 2638827 num_examples: 722 - name: shard_10324 num_bytes: 1700655 num_examples: 515 - name: shard_10418 num_bytes: 3034319 num_examples: 947 - name: shard_1045 num_bytes: 2042334 num_examples: 648 - name: shard_10428 num_bytes: 2314345 num_examples: 706 - name: shard_10435 num_bytes: 2300183 num_examples: 677 - name: shard_10424 num_bytes: 1839226 num_examples: 552 - name: shard_10442 num_bytes: 1543285 num_examples: 419 - name: shard_10411 num_bytes: 2005599 num_examples: 604 - name: shard_10344 num_bytes: 1796239 num_examples: 589 - name: shard_10439 num_bytes: 1780546 num_examples: 567 - name: shard_10351 num_bytes: 2156111 num_examples: 677 - name: shard_10446 num_bytes: 2117151 num_examples: 525 - name: shard_10457 num_bytes: 1851306 num_examples: 555 - name: shard_10464 num_bytes: 1316832 num_examples: 440 - name: shard_10405 num_bytes: 1820556 num_examples: 613 - name: shard_10471 num_bytes: 2397197 num_examples: 682 - name: shard_10311 num_bytes: 4072154 num_examples: 1148 - name: shard_10456 num_bytes: 1279577 num_examples: 430 - name: shard_1035 num_bytes: 2102014 num_examples: 687 - name: shard_10430 num_bytes: 2293697 num_examples: 686 - name: shard_10469 num_bytes: 2521584 num_examples: 743 - name: shard_10360 num_bytes: 2329044 num_examples: 680 - name: shard_10443 num_bytes: 2222280 num_examples: 641 - name: shard_10453 num_bytes: 3277011 num_examples: 931 - name: shard_10481 num_bytes: 2163505 num_examples: 709 - name: shard_10482 num_bytes: 1885620 num_examples: 503 - name: shard_10365 num_bytes: 1789825 num_examples: 453 - name: shard_10475 num_bytes: 2290432 num_examples: 635 - name: shard_10315 num_bytes: 2911312 num_examples: 743 - name: shard_10444 num_bytes: 1915386 num_examples: 550 - name: shard_10493 num_bytes: 2240928 num_examples: 752 - name: shard_10433 num_bytes: 1728758 num_examples: 554 - name: shard_10486 num_bytes: 1946726 num_examples: 564 - name: shard_1037 num_bytes: 1622214 num_examples: 464 - name: shard_1049 num_bytes: 2142677 num_examples: 691 - name: shard_10507 num_bytes: 1404701 num_examples: 444 - name: shard_10479 num_bytes: 2668644 num_examples: 706 - name: shard_10543 num_bytes: 1567113 num_examples: 498 - name: shard_10494 num_bytes: 2572169 num_examples: 834 - name: shard_10506 num_bytes: 2352799 num_examples: 689 - name: shard_10497 num_bytes: 2130672 num_examples: 640 - name: shard_10503 num_bytes: 2821589 num_examples: 657 - name: shard_10488 num_bytes: 2610372 num_examples: 824 - name: shard_1050 num_bytes: 2380295 num_examples: 610 - name: shard_10379 num_bytes: 2121338 num_examples: 596 - name: shard_10258 num_bytes: 2899614 num_examples: 881 - name: shard_10521 num_bytes: 1751228 num_examples: 578 - name: shard_10477 num_bytes: 1987455 num_examples: 610 - name: shard_10510 num_bytes: 1809438 num_examples: 536 - name: shard_10518 num_bytes: 1554268 num_examples: 534 - name: shard_10514 num_bytes: 2398872 num_examples: 659 - name: shard_10366 num_bytes: 2686341 num_examples: 715 - name: shard_10462 num_bytes: 3202984 num_examples: 912 - name: shard_10512 num_bytes: 2058849 num_examples: 697 - name: shard_10558 num_bytes: 2065125 num_examples: 572 - name: shard_10383 num_bytes: 2580580 num_examples: 859 - name: shard_10550 num_bytes: 2617491 num_examples: 643 - name: shard_10536 num_bytes: 2352902 num_examples: 649 - name: shard_10529 num_bytes: 1970611 num_examples: 633 - name: shard_10565 num_bytes: 1569669 num_examples: 522 - name: shard_10538 num_bytes: 2012923 num_examples: 564 - name: shard_10532 num_bytes: 1839647 num_examples: 594 - name: shard_10531 num_bytes: 2125990 num_examples: 618 - name: shard_10382 num_bytes: 1770026 num_examples: 493 - name: shard_10509 num_bytes: 1324378 num_examples: 402 - name: shard_10572 num_bytes: 1859423 num_examples: 489 - name: shard_1058 num_bytes: 1707150 num_examples: 491 - name: shard_10455 num_bytes: 3275368 num_examples: 750 - name: shard_10206 num_bytes: 3714862 num_examples: 891 - name: shard_10525 num_bytes: 3210740 num_examples: 892 - name: shard_10594 num_bytes: 1369358 num_examples: 458 - name: shard_10289 num_bytes: 3470407 num_examples: 963 - name: shard_10396 num_bytes: 3458836 num_examples: 956 - name: shard_10298 num_bytes: 2823620 num_examples: 791 download_size: 95273788 dataset_size: 169484311 configs: - config_name: default data_files: - split: train path: data/*.parquet - split: shard_10339 path: data/shard_10339-* - split: shard_10400 path: data/shard_10400-* - split: shard_10424 path: data/shard_10424-* - split: shard_10324 path: data/shard_10324-* - split: shard_10428 path: data/shard_10428-* - split: shard_10258 path: data/shard_10258-* - split: shard_10396 path: data/shard_10396-* - split: shard_10411 path: data/shard_10411-* - split: shard_10418 path: data/shard_10418-* - split: shard_10206 path: data/shard_10206-* - split: shard_10442 path: data/shard_10442-* - split: shard_1045 path: data/shard_1045-* - split: shard_10289 path: data/shard_10289-* - split: shard_10298 path: data/shard_10298-* - split: shard_10344 path: data/shard_10344-* - split: shard_10435 path: data/shard_10435-* - split: shard_10311 path: data/shard_10311-* - split: shard_10405 path: data/shard_10405-* - split: shard_10464 path: data/shard_10464-* - split: shard_10457 path: data/shard_10457-* - split: shard_10439 path: data/shard_10439-* - split: shard_10351 path: data/shard_10351-* - split: shard_10446 path: data/shard_10446-* - split: shard_10315 path: data/shard_10315-* - split: shard_10471 path: data/shard_10471-* - split: shard_1035 path: data/shard_1035-* - split: shard_10456 path: data/shard_10456-* - split: shard_10486 path: data/shard_10486-* - split: shard_10430 path: data/shard_10430-* - split: shard_10469 path: data/shard_10469-* - split: shard_10360 path: data/shard_10360-* - split: shard_10443 path: data/shard_10443-* - split: shard_10453 path: data/shard_10453-* - split: shard_10462 path: data/shard_10462-* - split: shard_10481 path: data/shard_10481-* - split: shard_10482 path: data/shard_10482-* - split: shard_10365 path: data/shard_10365-* - split: shard_10475 path: data/shard_10475-* - split: shard_10444 path: data/shard_10444-* - split: shard_10493 path: data/shard_10493-* - split: shard_10433 path: data/shard_10433-* - split: shard_1037 path: data/shard_1037-* - split: shard_1049 path: data/shard_1049-* - split: shard_10507 path: data/shard_10507-* - split: shard_10521 path: data/shard_10521-* - split: shard_10479 path: data/shard_10479-* - split: shard_10543 path: data/shard_10543-* - split: shard_10494 path: data/shard_10494-* - split: shard_10565 path: data/shard_10565-* - split: shard_10558 path: data/shard_10558-* - split: shard_10506 path: data/shard_10506-* - split: shard_10497 path: data/shard_10497-* - split: shard_10503 path: data/shard_10503-* - split: shard_10488 path: data/shard_10488-* - split: shard_1050 path: data/shard_1050-* - split: shard_10379 path: data/shard_10379-* - split: shard_10366 path: data/shard_10366-* - split: shard_10512 path: data/shard_10512-* - split: shard_10529 path: data/shard_10529-* - split: shard_10477 path: data/shard_10477-* - split: shard_10510 path: data/shard_10510-* - split: shard_10518 path: data/shard_10518-* - split: shard_10514 path: data/shard_10514-* - split: shard_10383 path: data/shard_10383-* - split: shard_10550 path: data/shard_10550-* - split: shard_10525 path: data/shard_10525-* - split: shard_10536 path: data/shard_10536-* - split: shard_10531 path: data/shard_10531-* - split: shard_10538 path: data/shard_10538-* - split: shard_10532 path: data/shard_10532-* - split: shard_10382 path: data/shard_10382-* - split: shard_10509 path: data/shard_10509-* - split: shard_10572 path: data/shard_10572-* - split: shard_1058 path: data/shard_1058-* - split: shard_10455 path: data/shard_10455-* - split: shard_10594 path: data/shard_10594-* --- ![VALID Dataset](https://huggingface.co/datasets/ontocord/VALID/resolve/main/banner1-1.webp) # VALID (Video-Audio Large Interleaved Dataset) ## Overview The **VALID (Video-Audio Large Interleaved Dataset)** is a multimodal dataset comprising approximately 720,000 [Creative Commons licensed](https://creativecommons.org/share-your-work/cclicenses/) videos crawled from YouTube, and processed into audio-video-text data records for machine learning research. **We are in the process of uploading so please be patient.** The dataset provides a unique opportunity for training models to understand relationships between modalities such as video frames, audio clips, and multilingual textual data, making it suitable for applications like multimodal representation learning. ## Features - Audio-Video-Text Format: A combination of: ``` English text ``` - The non-text multimodal portion begins the data item and can include multiple media. Some snippets may have more than one audio, and more than one video. Others may have only images/videos or only audio paired with English text. Each video contains multiple frames stored as images, and text captions for each image. There can also be standalone images interleaved as well. Even though each audio video snippets are no more than 10 seconds, a data record may span over more than 10 secs (e.g., if a data item has two 10 second videos, then the corresponding English text corresponds roughly to 20 seconds of video). The intention for this format is to teach a model to associate multiple modalities with each other, and understand multiple audio-video elements in an interleaved fashion. - Data Components: - **Images**: PNG format, phashed to ensure variability, with 0–10 images per audio snippet. Each image includes a caption created with Florence-2. - **Audio**: OGG format, multilingual, ~10 seconds per snippet, with shorter sound or music snippets (1–3 seconds) to minimize copyright issues. Each audio snippet is transcribed either with Whisper for non-English, or with the original Youtube ASR for English. - **Text**: Not including the captions and transcripts, the “text” portion is a concatenation of Youtube’s original English transcripts associated with the above media of around 1–40 words per data record. - Dataset Size: - **About 7,000,000 records.** - **About 15,000,000 images, each captioned with FLorence-2.** - **About 30,000,000 audio snippets, about half of which transcribed with Whisper-large, and half with Youtube ASR.** - **Divided into about 12K shards of about 600 records, each in a parquet file and a corresponding .tar.gz file for the media.** - **About 14TB in total.** ## File Organization - Each data entry follows the `