--- license: cc-by-sa-4.0 dataset_info: features: - name: video_id dtype: string - name: chunk_idx dtype: int64 - name: chunk_text dtype: string - name: video_metadata dtype: string - name: video_language dtype: string - name: chunk_media dtype: string splits: - name: shard_10339 num_bytes: 1997009 num_examples: 631 - name: shard_10400 num_bytes: 2638827 num_examples: 722 - name: shard_10424 num_bytes: 1839226 num_examples: 552 - name: shard_10324 num_bytes: 1700655 num_examples: 515 - name: shard_10428 num_bytes: 2314345 num_examples: 706 - name: shard_10258 num_bytes: 2899614 num_examples: 881 - name: shard_10396 num_bytes: 3458836 num_examples: 956 - name: shard_10418 num_bytes: 3034319 num_examples: 947 - name: shard_10206 num_bytes: 3714862 num_examples: 891 - name: shard_10442 num_bytes: 1543285 num_examples: 419 - name: shard_10411 num_bytes: 2005599 num_examples: 604 - name: shard_1045 num_bytes: 2042334 num_examples: 648 download_size: 9381853 dataset_size: 29188911 configs: - config_name: default data_files: - split: train path: data/*.parquet - split: shard_10339 path: data/shard_10339-* - split: shard_10400 path: data/shard_10400-* - split: shard_10424 path: data/shard_10424-* - split: shard_10324 path: data/shard_10324-* - split: shard_10428 path: data/shard_10428-* - split: shard_10258 path: data/shard_10258-* - split: shard_10396 path: data/shard_10396-* - split: shard_10411 path: data/shard_10411-* - split: shard_10418 path: data/shard_10418-* - split: shard_10206 path: data/shard_10206-* - split: shard_10442 path: data/shard_10442-* - split: shard_1045 path: data/shard_1045-* --- ![VALID Dataset](https://huggingface.co/datasets/ontocord/VALID/resolve/main/banner1-1.webp) # VALID (Video-Audio Large Interleaved Dataset) ## Overview The **VALID (Video-Audio Large Interleaved Dataset)** is a multimodal dataset comprising approximately 720,000 [Creative Commons licensed](https://creativecommons.org/share-your-work/cclicenses/) videos crawled from YouTube, and processed into audio-video-text data records for machine learning research. **We are in the process of uploading so please be patient.** The dataset provides a unique opportunity for training models to understand relationships between modalities such as video frames, audio clips, and multilingual textual data, making it suitable for applications like multimodal representation learning. ## Features - Audio-Video-Text Format: A combination of: ``` English text ``` - The non-text multimodal portion begins the data item and can include multiple media. Some snippets may have more than one audio, and more than one video. Others may have only images/videos or only audio paired with English text. Each video contains multiple frames stored as images, and text captions for each image. There can also be standalone images interleaved as well. Even though each audio video snippets are no more than 10 seconds, a data record may span over more than 10 secs (e.g., if a data item has two 10 second videos, then the corresponding English text corresponds roughly to 20 seconds of video). The intention for this format is to teach a model to associate multiple modalities with each other, and understand multiple audio-video elements in an interleaved fashion. - Data Components: - **Images**: PNG format, phashed to ensure variability, with 0–10 images per audio snippet. Each image includes a caption created with Florence-2. - **Audio**: OGG format, multilingual, ~10 seconds per snippet, with shorter sound or music snippets (1–3 seconds) to minimize copyright issues. Each audio snippet is transcribed either with Whisper for non-English, or with the original Youtube ASR for English. - **Text**: Not including the captions and transcripts, the “text” portion is a concatenation of Youtube’s original English transcripts associated with the above media of around 1–40 words per data record. - Dataset Size: - **About 7,000,000 records.** - **About 15,000,000 images, each captioned with FLorence-2.** - **About 30,000,000 audio snippets, about half of which transcribed with Whisper-large, and half with Youtube ASR.** - **Divided into about 12K shards of about 600 records, each in a parquet file and a corresponding .tar.gz file for the media.** - **About 14TB in total.** ## File Organization - Each data entry follows the `