--- language: - fr multilinguality: - monolingual task_categories: - token-classification --- # m2m3_fine_tuning_ocr_cmbert_io ## Introduction This dataset was used to fine-tuned [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) for **nested NER task** using Independant NER layers approach [M1]. It contains Paris trade directories entries from the 19th century. ## Dataset parameters * Approachrd : M2 and M3 * Dataset type : noisy (Pero OCR) * Tokenizer : [Jean-Baptiste/camembert-ner](https://huggingface.co/Jean-Baptiste/camembert-ner) * Tagging format : IO * Counts : * Train : 6084 * Dev : 676 * Test : 1685 * Associated fine-tuned models : * M2 : [nlpso/m2_joint_label_ocr_cmbert_io](https://huggingface.co/nlpso/m2_joint_label_ocr_cmbert_io) * M3 : [nlpso/m3_hierarchical_ner_ocr_cmbert_io](https://huggingface.co/nlpso/m3_hierarchical_ner_ocr_cmbert_io) ## Entity types Abbreviation|Entity group (level)|Description -|-|- O |1 & 2|Outside of a named entity PER |1|Person or company name ACT |1 & 2|Person or company professional activity TITREH |2|Military or civil distinction DESC |1|Entry full description TITREP |2|Professionnal reward SPAT |1|Address LOC |2|Street name CARDINAL |2|Street number FT |2|Geographical feature ## How to use this dataset ```python from datasets import load_dataset train_dev_test = load_dataset("nlpso/m2m3_fine_tuning_ocr_cmbert_io")